Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Nanomolecular Agents Deployed to Detect Diseases

By BiotechDaily International staff writers
Posted on 22 Jan 2014
Print article
Image: Soft micellar nanoparticles can be prepared from DNA conjugates designed to assemble via base pairing such that strands containing a polymer corona and a cholesterol tail generate controlled supramolecular architecture (Photo courtesy of Nanoscale).
Image: Soft micellar nanoparticles can be prepared from DNA conjugates designed to assemble via base pairing such that strands containing a polymer corona and a cholesterol tail generate controlled supramolecular architecture (Photo courtesy of Nanoscale).
Pharmaceutical sleuthing has come closer to reality with the development of “nano-spy” compounds programmed to jump into play when they receive a specific signal.

Scientist from the University of Nottingham’s (UK) School of Pharmacy have designed and evaluated large molecular complexes that will reveal their real identity only when they have reached their intended target.

The compounds have been developed as part of a five-year program funded by the Engineering and Physical Sciences Research Council (EPSRC) called Bar-Coded Materials. The cloak each spherical complex wears is a sheath of biocompatible polymer that encapsulates and covers biologically active material inside, preventing any biologic interaction so long as the shield remains in place. The intelligent part is in the DNA-based zips that hold the coat in position until triggered to undo. Because any DNA code (also known as a molecular cipher) can be chosen, the release mechanism can be bar-coded so that it is triggered by a specific biomarker—for example, a message from a disease gene.

What is then exposed—an active pharmaceutical agent, a molecular tag to attach to diseased tissue, or a molecular beacon to signal activation—depends on what function is required. Prof. Cameron Alexander, who leads the project, said, “These types of switchable nanoparticles could be extremely versatile. As well as initial detection of a medical condition, they could be used to monitor the progress of diseases and courses of treatment, or adapted to deliver potent drugs at particular locations in a patient’s body. It might even become possible to use mobile phones rather than medical scanners to detect programmed responses from later generations of the devices.”

The researchers, in their preliminary trials, have validated that the idea works in the test tube—the switchable molecular constructs do respond as predicted when presented with the correct molecular signals. The group is now working hard to move the project forwards.

An early application might be in dipstick technology—testing for specific infections in a blood or sputum, for example. But because the polymer coating (polyethylene glycol) is biocompatible, the researchers are hopeful that in the long run “self-authenticating medicines,” based on the approach could be injected into patients, to hunt for diseased tissue, and report their success.

“The key to this breakthrough has been the five-year EPSRC Leadership Fellowship awarded to me back in 2009,” noted Prof. Alexander. “This has provided the stability of funding to recruit and retain an outstanding team, who have been integral to realizing the ideas put forward in the Fellowship. It has also given us the freedom to explore a whole range of new concepts, as well as the time needed to test our ideas to bring this and other breakthroughs within reach.”

The study’s findings were published January 2014 in the journal Nanoscale.

Related Links:

University of Nottingham 
EPSRC



Print article

Channels

Genomics/Proteomics

view channel
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).

Molecular Pathway Controlling High-affinity Antibody Production Identified

A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.