Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Nanomolecular Agents Deployed to Detect Diseases

By BiotechDaily International staff writers
Posted on 22 Jan 2014
Image: Soft micellar nanoparticles can be prepared from DNA conjugates designed to assemble via base pairing such that strands containing a polymer corona and a cholesterol tail generate controlled supramolecular architecture (Photo courtesy of Nanoscale).
Image: Soft micellar nanoparticles can be prepared from DNA conjugates designed to assemble via base pairing such that strands containing a polymer corona and a cholesterol tail generate controlled supramolecular architecture (Photo courtesy of Nanoscale).
Pharmaceutical sleuthing has come closer to reality with the development of “nano-spy” compounds programmed to jump into play when they receive a specific signal.

Scientist from the University of Nottingham’s (UK) School of Pharmacy have designed and evaluated large molecular complexes that will reveal their real identity only when they have reached their intended target.

The compounds have been developed as part of a five-year program funded by the Engineering and Physical Sciences Research Council (EPSRC) called Bar-Coded Materials. The cloak each spherical complex wears is a sheath of biocompatible polymer that encapsulates and covers biologically active material inside, preventing any biologic interaction so long as the shield remains in place. The intelligent part is in the DNA-based zips that hold the coat in position until triggered to undo. Because any DNA code (also known as a molecular cipher) can be chosen, the release mechanism can be bar-coded so that it is triggered by a specific biomarker—for example, a message from a disease gene.

What is then exposed—an active pharmaceutical agent, a molecular tag to attach to diseased tissue, or a molecular beacon to signal activation—depends on what function is required. Prof. Cameron Alexander, who leads the project, said, “These types of switchable nanoparticles could be extremely versatile. As well as initial detection of a medical condition, they could be used to monitor the progress of diseases and courses of treatment, or adapted to deliver potent drugs at particular locations in a patient’s body. It might even become possible to use mobile phones rather than medical scanners to detect programmed responses from later generations of the devices.”

The researchers, in their preliminary trials, have validated that the idea works in the test tube—the switchable molecular constructs do respond as predicted when presented with the correct molecular signals. The group is now working hard to move the project forwards.

An early application might be in dipstick technology—testing for specific infections in a blood or sputum, for example. But because the polymer coating (polyethylene glycol) is biocompatible, the researchers are hopeful that in the long run “self-authenticating medicines,” based on the approach could be injected into patients, to hunt for diseased tissue, and report their success.

“The key to this breakthrough has been the five-year EPSRC Leadership Fellowship awarded to me back in 2009,” noted Prof. Alexander. “This has provided the stability of funding to recruit and retain an outstanding team, who have been integral to realizing the ideas put forward in the Fellowship. It has also given us the freedom to explore a whole range of new concepts, as well as the time needed to test our ideas to bring this and other breakthroughs within reach.”

The study’s findings were published January 2014 in the journal Nanoscale.

Related Links:

University of Nottingham 
EPSRC



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.