Features Partner Sites Information LinkXpress
Sign In
Demo Company

Results of Mutagenesis Study Expected to Guide Development of Drugs for Nervous System Disorders

By BiotechDaily International staff writers
Posted on 21 Jan 2014
Print article
Image: Three-dimensional molecular space-fill model of tetrabenazine (TBZ) (Photo courtesy of Wikimedia Commons).
Image: Three-dimensional molecular space-fill model of tetrabenazine (TBZ) (Photo courtesy of Wikimedia Commons).
A mutagenesis study utilizing a human gene expressed by yeast cells has yielded new insights into the molecular mechanism controlling binding of neurotransmitters in the brain.

The study focused on the transport of monoamines into storage vesicles, which is mediated by vesicular monoamine transporter 2 (VMAT2) and is inhibited by the drug tetrabenazine (TBZ), which is used to control the jerky involuntary movements that occur in Huntington's disease and related disorders.

VMAT2, a member of the DHA12 family of multidrug transporters, is an integral membrane protein that transports monoamines—particularly neurotransmitters such as dopamine, norepinephrine, serotonin, and histamine—from the cellular cytosol into synaptic vesicles. Irregularities in storage and transport of these neurotransmitters causes brain disorders and nervous system diseases, including Huntington's disease, Parkinson's disease, and various motor dysfunctions.

Investigators at the Hebrew University of Jerusalem (Israel) studied the interaction between VMAT2 and TBZ by implanting the human VMAT2 gene into yeast cells and then screening for mutants that were resistant to TBZ inhibition.

They reported in the November 8, 2013, issue of the Journal of Biological Chemistry that at the molecular level TBZ mapped to either conserved proline or glycine resdues, or to residues immediately adjacent to conserved proline and glycine. The data strongly suggested that these conserved alpha-helix breaking residues played an important role in conformational rearrangements required for TBZ binding and substrate transport.

These results provide a novel insight into the mechanism of neurotransmitter transport and TBZ binding by VMAT2, which is expected to aid in the formulation of new drug designs.

Related Links:

Hebrew University of Jerusalem

Print article



view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.