Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

MicroRNA Treatment Prevents Breast Cancer in Mouse Model

By BiotechDaily International staff writers
Posted on 15 Jan 2014
Image: Milk ducts in cancer-prone mice are packed with tumor cells (deep purple cells, shown by arrow), causing the ducts to grow fatter. However, milk ducts in mice treated with a gene-silencing nanoparticle remain mostly hollow (right, shown by arrows), like healthy ducts (Photo courtesy of Dr. Amy Brock, Harvard University Medical School).
Image: Milk ducts in cancer-prone mice are packed with tumor cells (deep purple cells, shown by arrow), causing the ducts to grow fatter. However, milk ducts in mice treated with a gene-silencing nanoparticle remain mostly hollow (right, shown by arrows), like healthy ducts (Photo courtesy of Dr. Amy Brock, Harvard University Medical School).
Mice that had been genetically engineered to develop breast cancer were protected from the disease by injections of nanoparticles containing a specific microRNA (miRNA) directly into their milk ducts.

Investigators at Harvard University Medical School (Boston, MA, USA) were looking for biomarkers to better identify and treat breast lesions at the earliest possible stage of development. Working with transgenic C3(1)-SV40TAg mice, they used computational gene network modeling to identify the HoxA1 (Homeobox A1) protein as a putative driver of early mammary cancer progression. Previous studies had shown the HOXA1 gene was repressed by the microRNA miR-10a.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

The investigators hypothesized that the progression of breast cancer could be blocked by RNA interference (RNAi) therapy and set out to develop a targeted therapeutic delivery strategy. Initially, they found that silencing the HOXA1 gene in cultured mouse or human mammary tumor spheroids resulted in increased lumen formation, reduced tumor cell proliferation, and restoration of normal epithelial polarization.

When the HOXA1 gene was silenced in vivo via intraductal delivery of nanoparticles loaded with miRNA through the nipple of transgenic mice with early-stage disease, mammary epithelial cell proliferation rates were suppressed, loss of estrogen and progesterone receptor expression was prevented, and tumor incidence was reduced by 75%. These findings were published in the January 1, 2014, online edition of the journal Science Translational Medicine.

"The findings open up the possibility of someday treating patients who have a genetic propensity for cancer, which could change people's lives and alleviate great anxiety," said senior author Dr. Don Ingber, professor of vascular biology and bioengineering at Harvard University Medical School. "The idea would be start giving it early on and sustain treatment throughout life to prevent cancer development or progression."

"This work marks a milestone not just in breast cancer research, but in systems biology," said Dr. Ingber. "Combining computational, engineering, and biological approaches has led to a new way to identify drugs that prevent cancer development and progression."

Related Links:

Harvard University Medical School



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.