Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

MicroRNA Treatment Prevents Breast Cancer in Mouse Model

By BiotechDaily International staff writers
Posted on 15 Jan 2014
Image: Milk ducts in cancer-prone mice are packed with tumor cells (deep purple cells, shown by arrow), causing the ducts to grow fatter. However, milk ducts in mice treated with a gene-silencing nanoparticle remain mostly hollow (right, shown by arrows), like healthy ducts (Photo courtesy of Dr. Amy Brock, Harvard University Medical School).
Image: Milk ducts in cancer-prone mice are packed with tumor cells (deep purple cells, shown by arrow), causing the ducts to grow fatter. However, milk ducts in mice treated with a gene-silencing nanoparticle remain mostly hollow (right, shown by arrows), like healthy ducts (Photo courtesy of Dr. Amy Brock, Harvard University Medical School).
Mice that had been genetically engineered to develop breast cancer were protected from the disease by injections of nanoparticles containing a specific microRNA (miRNA) directly into their milk ducts.

Investigators at Harvard University Medical School (Boston, MA, USA) were looking for biomarkers to better identify and treat breast lesions at the earliest possible stage of development. Working with transgenic C3(1)-SV40TAg mice, they used computational gene network modeling to identify the HoxA1 (Homeobox A1) protein as a putative driver of early mammary cancer progression. Previous studies had shown the HOXA1 gene was repressed by the microRNA miR-10a.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

The investigators hypothesized that the progression of breast cancer could be blocked by RNA interference (RNAi) therapy and set out to develop a targeted therapeutic delivery strategy. Initially, they found that silencing the HOXA1 gene in cultured mouse or human mammary tumor spheroids resulted in increased lumen formation, reduced tumor cell proliferation, and restoration of normal epithelial polarization.

When the HOXA1 gene was silenced in vivo via intraductal delivery of nanoparticles loaded with miRNA through the nipple of transgenic mice with early-stage disease, mammary epithelial cell proliferation rates were suppressed, loss of estrogen and progesterone receptor expression was prevented, and tumor incidence was reduced by 75%. These findings were published in the January 1, 2014, online edition of the journal Science Translational Medicine.

"The findings open up the possibility of someday treating patients who have a genetic propensity for cancer, which could change people's lives and alleviate great anxiety," said senior author Dr. Don Ingber, professor of vascular biology and bioengineering at Harvard University Medical School. "The idea would be start giving it early on and sustain treatment throughout life to prevent cancer development or progression."

"This work marks a milestone not just in breast cancer research, but in systems biology," said Dr. Ingber. "Combining computational, engineering, and biological approaches has led to a new way to identify drugs that prevent cancer development and progression."

Related Links:

Harvard University Medical School



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.