Features Partner Sites Information LinkXpress
Sign In
Demo Company

Beta3-Integrin Protein Possible Key to Block Tumor Growth

By BiotechDaily International staff writers
Posted on 15 Jan 2014
Print article
Image: Graphic of Cytoplasmic domain of the integrin beta-3 (Photo courtesy of Wikipedia Commons).
Image: Graphic of Cytoplasmic domain of the integrin beta-3 (Photo courtesy of Wikipedia Commons).
A protein that has been at the forefront of cancer drug development for the last 20 years should not be given up on according to new findings by British investigators.

The most advanced version of αvβ3-integrin antagonists was unsuccessful in clinical trials to treat aggressive forms of brain cancer. However, research published January 3, 2014, in the American Heart Association’s journal Circulation Research revealed that targeting the specific protein could still be key to blocking tumor growth. Most significantly, the drugs targeting the protein cause minimal side effects compared to other drugs, which can cause high blood pressure and bleeding in the gut.

Tumors must recruit their own blood supply to grow beyond a very small size. The researchers examined the cells that line blood vessels (endothelial cells) in mice, and specifically the role of a widely expressed protein called beta3-integrin.

Dr. Stephen Robinson, from the University of East Anglia’s (UEA; Norwich, UK) School of Biological Sciences, said, “This protein has been the focus of drug design over the last two decades because its expression is vastly increased in endothelial cells during blood vessel recruitment. The most advanced of these drugs, however, has recently failed a phase III clinical trial to treat an aggressive form of brain cancer. In line with other clinical work, patients respond to treatment for a short while but then their cancers escape the treatment. This research helps to explain why these very promising drugs aren’t meeting with the success that was anticipated and it suggests a way forward—how to make them work better.”

The study authors additionally reported that they revealed how tumors continue to grow in spite of treatment that should suppress blood vessel recruitment. In this study, they modulated how they are recruiting their blood vessels by using a different pathway from the one that is being targeted. They have identified some molecular alterations in endothelial cells that occur with long-term suppression of beta3-integrin that might help the cells evade the beta3-integrin blockade.

Dr. Robinson continued, “Our research also shows that timing is critical when targeting the protein beta3-integrin. Importantly, these findings have reestablished the expression of beta3-integrin as a valid clinical target when treating cancer. Efforts must now be refocused to either develop new drugs to target beta3-integrin, or figure out how to more effectively use the drugs that already exist.”

Related Links:

University of East Anglia

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.