Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Rare Type of Soft-Tissue Cancer May Be Cured by Suppressing Tumor Growth Protein

By BiotechDaily International staff writers
Posted on 13 Jan 2014
A rare, lethal type of soft-tissue sarcoma may be entirely eradicated merely by suppressing a key protein involved in its growth.

In the study published online December 26, 2013, in the journal Cell Reports, scientists report on the discovery that suppressing the action of a protein called BRD4 caused cancer cells to die in a lab mouse model of malignant peripheral nerve sheath tumors (MPNSTs).

“This study identifies a potential new therapeutic target to combat MPNST, an incurable type of cancer that is typically fatal,” said Dr. Lu Le, assistant professor of dermatology at the University of Texas (UT) Southwestern (Dallas, USA), and senior author of the study. “The findings also provide important insight into what causes these tumors to develop.”

MPNSTs are very aggressive sarcomas that form around nerves. These tumors can develop sporadically, but approximately 50% of cases are in patients with a genetic disorder called neurofibromatosis type 1 (NF1) that affects 1 in 3,500 people. About 10% of NF1 patients will develop MPNST, which usually evolves from a benign but often large and disfiguring tumor called a plexiform neurofibroma.

Up to now, the preferred treatment for MPNST has been surgical removal, but that frequently is difficult or impossible due to the tumor’s location around nerves. Radiation and chemotherapy are other alternatives, but their effectiveness is limited. The five-year survival rate for MPNST patients is about 50%.

By studying alterations in cells as they evolved into cancerous MPNSTs, researchers in Dr. Le’s laboratory were able to determine that BRD4, a bromodomain protein that binds to DNA to regulate gene activation, is expressed at an unusually high level in MPNST cancer cells. This action caused another protein called BCL-2 to keep cancer cells from dying. Alternately, when researchers inhibited BRD4 either genetically in the mice or pharmacologically by administering a compound called JQ1, the tumors shrank.

“These treatments suppressed tumor growth and caused the cancer cells to undergo apoptosis, or cell death. This is why BRD4 inhibition is exquisitely effective against MPNSTs and may represent a paradigm shift in therapy for these patients,” Dr. Le said.

The same class of drug used in the experiments is currently being evaluated in phase 1 and 2 trials for treatment of leukemia and a subtype of lung cancer. UT Southwestern in the meantime is working with a pharmaceutical company to develop a similar BRD4-inhibiting drug to initiate a clinical trial for MPNST patients.

New agents are urgently needed to treat MPNST and provide hope to NF1 patients at highest risk for this cancer, according to Dr. Le, who also serves as codirector of UT Southwestern’s Comprehensive Neurofibromatosis Clinic.

Related Links:

University of Texas Southwestern



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A scheme for the generation of induced pluripotent stem cells (IPSC). (1) Isolate and culture donor cells. (2) Transfect stem cell-associated genes into the cells by viral vectors. Red cells indicate the cells expressing the exogenous genes. (3)  Harvest and culture the cells using mitotically inactivated feeder cells. (4) A small subset of the transfected cells forms iPSC cell colonies (Photo courtesy of Wikimedia Commons).

Innovative Technique Produces More Reliable Pluripotent Stem Cells

A recent paper described a more reliable way to induce the formation of pluripotent stem cells (iPSCs) from adult cells in a mouse model. Reliable high-quality iPSCs are needed for the development of... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.