Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

New Generation of Malaria Drugs Block Myristoylation in the Parasite

By BiotechDaily International staff writers
Posted on 02 Jan 2014
Image: Blood smear from a P. falciparum culture. Several red blood cells show ring stages inside them, while close to the center there is a schizont and on the left a trophozoite (Photo courtesy of Wikimedia Commons).
Image: Blood smear from a P. falciparum culture. Several red blood cells show ring stages inside them, while close to the center there is a schizont and on the left a trophozoite (Photo courtesy of Wikimedia Commons).
Researchers have identified the enzyme N-myristoyltransferase (NMT) as a target for a new generation of drugs to be used for the treatment of malaria.

Investigators from several research institutions in the United Kingdom taking part in a five-year project funded by the British Councils for Medical Research, Engineering and Physical Sciences Research, and Biotechnology and Biological Sciences Research recently described an integrated chemical biology approach that they had used to explore protein myristoylation in the major human malaria parasite Plasmodium falciparum.

N-myristoylation is a cellular process in which a myristoyl group (derived from myristic acid) is covalently attached via an amide bond to the alpha-amino group of an N-terminal amino acid of a nascent polypeptide. This modification ensures the proper function and intracellular trafficking of certain proteins. Many proteins involved in a wide variety of signaling, including cellular transformation and oncogenesis, are myristoylated.

The investigators reported in the December 22, 2013, online edition of the journal Nature Chemistry that NMT was an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and that selective inhibition of N-myristoylation led to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle.

Senior author Dr. Edward W. Tate, professor of chemistry at Imperial College London (United Kingdom), said, "Finding an enzyme that can be targeted effectively in malaria can be a big challenge. Here, we have shown not only why NMT is essential for a wide range of important processes in the parasite, but also that we can design molecules that stop it from working during infection. It has so many functions that we think blocking it could be effective at preventing long-term disease and transmission, in addition to treating acute malaria. We expect it to work not just on Plasmodium falciparum, the most common malaria parasite, but the other species as well. We need to do some more work in the lab to find the best candidate molecule to take into clinical trials, but hopefully we will be ready to do that within a few years."

Related Links:

Imperial College London



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Alternative splicing produces two protein isoforms (Photo courtesy of Wikimedia Commons).

Key Regulator of Cancer-Inducing Alternative Splicing Identified

Cancer researchers have identified the splicing factor RBM4 (RNA-binding protein 4) as a key determinant in processes that prevent tumor development and spread. RBM4 is known to be crucial to gene splicing... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.