Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Combination Drug Screening Strategy Identifies Obesity-Diabetes Treatment Target

By BiotechDaily International staff writers
Posted on 02 Jan 2014
Image: As proof of the power of their new screening strategy, researchers at The Scripps Research Institute used the method to identify a compound that shows promise for treating obesity-linked diabetes. This image shows a structure identified as a target for obesity-diabetes (human Ces3), superimposed on a field of human fat cells with their lipids stained with a fluorescent dye (Photo courtesy of the Scripps Research Institute).
Image: As proof of the power of their new screening strategy, researchers at The Scripps Research Institute used the method to identify a compound that shows promise for treating obesity-linked diabetes. This image shows a structure identified as a target for obesity-diabetes (human Ces3), superimposed on a field of human fat cells with their lipids stained with a fluorescent dye (Photo courtesy of the Scripps Research Institute).
A drug discovery strategy that combined phenotypic screening with a target-identification approach was used to identify a novel drug target that, when treated, relieved symptoms of metabolic disease in mouse models.

Phenotypic screening, which tests candidate drug compounds for their ability to produce a desired effect directly on living cells, has largely been replaced by high throughput target-based screening, which assays candidate compounds against large numbers of biochemical reactions in microarrays. However, candidate drugs selected by target-based screening often fail when tested in cellular settings.

To improve chances of selecting successful drug candidates investigators at the Scripps Research Institute (La Jolla, CA, USA) have combined phenotypic screening of a directed small-molecule library with competitive activity-based protein profiling to map and functionally characterize the targets of screening hits.

They reported in the December 22, 2013, online edition of the journal Nature Chemical Biology that they had used this combined strategy to identify carboxylesterase 3 (Ces3) as a primary molecular target of bioactive compounds that promote lipid storage in adipocytes. Ces 3 was known previously to be a member of a large multigene family. The enzymes encoded by these genes had been shown to be responsible for the hydrolysis of ester- and amide-bond-containing drugs such as cocaine and heroin. They also hydrolyzed long-chain fatty acid esters and thioesters. The specific function of this enzyme had not yet been determined; however, it was speculated that carboxylesterases played a role in lipid metabolism and/or the blood–brain barrier system. The CES3 gene is expressed in several tissues, particularly in colon, trachea, and brain, and the protein participates in colon and neural drug metabolism.

The Scripps investigators reported that Ces3 activity was markedly elevated during adipocyte differentiation. They treated two mouse models of obesity-diabetes with a Ces3 inhibitor and found that this drug (WWL113) corrected multiple features of metabolic syndrome, illustrating the power of the described strategy to accelerate the identification and pharmacologic validation of new therapeutic targets.

"In recent years, compounds selected with target-based in vitro tests have seemed to be failing increasingly often when tested in the more realistic biological environments of cells and animals. This integrated strategy we have developed has the potential to accelerate the discovery of important biological pathways and may lead to faster development of new drugs for multiple diseases," said Dr. Enrique Saez, associate professor of chemical physiology at The Scripps Research Institute.

"The [WWL113] treated animals showed resistance to weight gain—they were not putting on as much weight as the controls," said Dr. Saez. "Their blood biochemistry also was getting normalized; their glucose, triglyceride, and cholesterol levels were coming down towards normal levels."

Related Links:

The Scripps Research Institute



comments powered by Disqus

Channels

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.