Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Tumor Growth Blocked in Mice by Suppressing Antioxidants in Cancer Cells

By BiotechDaily International staff writers
Posted on 11 Dec 2013
Many cancers have adapted to deal with the high levels of immune system-produced free radicals, also referred to as reactive oxygen species, by overproducing antioxidant proteins. One of these proteins, superoxide dismutase 1 (SOD1), is overproduced in lung adenocarcinomas and has been implicated as a target for chemotherapy.

In the December 2, 2013, issue of the Journal of Clinical Investigation, Dr. Navdeep Chandel and colleagues from Northwestern University (Evanston, IL, USA) reported the effects of a SOD1 pharmacologic suppressor on non-small-cell lung cancer (NSCLC) cells. The inhibitor, called ATN-224, blocked the growth of human NSCLC cells in culture, and triggered their death. The researchers also discovered that ATN-224 inhibited other antioxidant proteins, which caused high levels of hydrogen peroxide inside the cells. Cancer cells’ capability to generate hydrogen peroxide was required for ATN-224-dependent effects, because hydrogen peroxide activated cell death pathways.

ATN-224, moreover, triggered cancer cell death and decreased tumor sizes in a mouse model of lung adenocarcinoma. ATN-224-dependent effects in lab mice were enhanced when the inhibitor was used in combination with another drug that activates programmed cell death.

These new findings indicate that antioxidant suppression may be a feasible chemotherapeutic strategy.

Related Links:

Northwestern University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.