Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Novel Nanosponge Vaccine Protects Mice from MRSA Toxin

By BiotechDaily International staff writers
Posted on 10 Dec 2013
Image: The glowing yellow specks in the image show uptake of the nanosponge vaccine by a mouse immune system dendritic cell. The detained alpha-hemolysin toxins were labeled with a fluorescent dye, which glows yellow. The cell membrane was stained red and the nuclei stained blue (Photo courtesy of the University of California, San Diego,  Department of NanoEngineering).
Image: The glowing yellow specks in the image show uptake of the nanosponge vaccine by a mouse immune system dendritic cell. The detained alpha-hemolysin toxins were labeled with a fluorescent dye, which glows yellow. The cell membrane was stained red and the nuclei stained blue (Photo courtesy of the University of California, San Diego, Department of NanoEngineering).
Image: The nanosponges at the foundation of the experimental “toxoid vaccine” platform are biocompatible particles made of a polymer core (light-blue-green color) wrapped in a red-blood-cell membrane (orange). Each nanosponge's red-blood-cell membrane seizes and detains the Staphylococcus aureus alpha-hemolysin toxin (blue) without compromising the toxin’s structural integrity through heating or chemical processing. These toxin-studded nanosponges served as vaccines capable of triggering neutralizing antibodies and fighting off otherwise lethal doses of the toxin in mice (Photo courtesy of the University of California, San Diego,  Department of NanoEngineering).
Image: The nanosponges at the foundation of the experimental “toxoid vaccine” platform are biocompatible particles made of a polymer core (light-blue-green color) wrapped in a red-blood-cell membrane (orange). Each nanosponge's red-blood-cell membrane seizes and detains the Staphylococcus aureus alpha-hemolysin toxin (blue) without compromising the toxin’s structural integrity through heating or chemical processing. These toxin-studded nanosponges served as vaccines capable of triggering neutralizing antibodies and fighting off otherwise lethal doses of the toxin in mice (Photo courtesy of the University of California, San Diego, Department of NanoEngineering).
A novel vaccine based on "nanosponges" that sequester toxic, pore-forming toxoids—such as that produced by MRSA (methicylin resistant Staphylococcus aureus)—permits presentation of these toxins to immune system defensive cells without danger of damaging them.

It is not possible to deliver a native pore-forming toxin to immune cells without damaging the cells. However, the heating or chemical processing required to neutralize the toxin can compromise the toxin's structural integrity and reduce the value of the vaccine.

To get around this problem, investigators at the University of California, San Diego (USA) developed "nanosponges.” These are biocompatible particles made of a polymer core wrapped in a red blood cell membrane. The red blood cell coating allows the nanosponge to incorporate and hold I alpha-hemolysin toxin without compromising the toxin’s structural integrity through heating or chemical processing. Despite being intact structurally, the trapped toxoid is rendered incapable of damaging other cells.

A paper published in the December 1, 2013, online edition of the journal Nature Nanotechnology presented results from experiments in which nanosponges loaded with toxoid were used to protect mice from MRSA infection. After one injection of the vaccine, 50% of the nanosponge-treated animals survived as compared to fewer than 10% of mice that had been vaccinated with heat-inactivated toxoid. An additional two booster shots increased the survival rate for the nanosponge-vaccinated animals to 100% compared to 90% for those vaccinated with the heat-treated toxin.

"The more you heat it, the safer the toxin is, but the more you heat it, the more you damage the structure of the protein," said senior author Dr. Liangfang Zhang, professor of nanoengineering at the University of California, San Diego. "And this structure is what the immune cell recognizes, and builds its antibodies against. Before this there was no way you could deliver a native toxin to the immune cells without damaging the cells, but this technology allows us to do this."

"The nanosponge vaccine was also able to completely prevent the toxin's damages in the skin, where MRSA infections frequently take place," said Dr. Zhang. "The particles work so beautifully that it might be possible to detain several toxins at once on them, creating one vaccine against many types of pore-forming toxins, from Staphylococcus to snake venom."

Related Links:

University of California, San Diego



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

White-Matter Deficits Found in Codeine-Containing Cough Syrup Users

A magnetic resonance imaging (MRI) study of chronic users of codeine-containing cough syrups (CCS) has found deficits in specific regions of brain white matter and linked these changes with increased impulsivity in codeine-containing cough syrup users. These findings were consistent with findings from earlier research of... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.