Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Novel Nanosponge Vaccine Protects Mice from MRSA Toxin

By BiotechDaily International staff writers
Posted on 10 Dec 2013
Print article
Image: The glowing yellow specks in the image show uptake of the nanosponge vaccine by a mouse immune system dendritic cell. The detained alpha-hemolysin toxins were labeled with a fluorescent dye, which glows yellow. The cell membrane was stained red and the nuclei stained blue (Photo courtesy of the University of California, San Diego,  Department of NanoEngineering).
Image: The glowing yellow specks in the image show uptake of the nanosponge vaccine by a mouse immune system dendritic cell. The detained alpha-hemolysin toxins were labeled with a fluorescent dye, which glows yellow. The cell membrane was stained red and the nuclei stained blue (Photo courtesy of the University of California, San Diego, Department of NanoEngineering).
Image: The nanosponges at the foundation of the experimental “toxoid vaccine” platform are biocompatible particles made of a polymer core (light-blue-green color) wrapped in a red-blood-cell membrane (orange). Each nanosponge's red-blood-cell membrane seizes and detains the Staphylococcus aureus alpha-hemolysin toxin (blue) without compromising the toxin’s structural integrity through heating or chemical processing. These toxin-studded nanosponges served as vaccines capable of triggering neutralizing antibodies and fighting off otherwise lethal doses of the toxin in mice (Photo courtesy of the University of California, San Diego,  Department of NanoEngineering).
Image: The nanosponges at the foundation of the experimental “toxoid vaccine” platform are biocompatible particles made of a polymer core (light-blue-green color) wrapped in a red-blood-cell membrane (orange). Each nanosponge's red-blood-cell membrane seizes and detains the Staphylococcus aureus alpha-hemolysin toxin (blue) without compromising the toxin’s structural integrity through heating or chemical processing. These toxin-studded nanosponges served as vaccines capable of triggering neutralizing antibodies and fighting off otherwise lethal doses of the toxin in mice (Photo courtesy of the University of California, San Diego, Department of NanoEngineering).
A novel vaccine based on "nanosponges" that sequester toxic, pore-forming toxoids—such as that produced by MRSA (methicylin resistant Staphylococcus aureus)—permits presentation of these toxins to immune system defensive cells without danger of damaging them.

It is not possible to deliver a native pore-forming toxin to immune cells without damaging the cells. However, the heating or chemical processing required to neutralize the toxin can compromise the toxin's structural integrity and reduce the value of the vaccine.

To get around this problem, investigators at the University of California, San Diego (USA) developed "nanosponges.” These are biocompatible particles made of a polymer core wrapped in a red blood cell membrane. The red blood cell coating allows the nanosponge to incorporate and hold I alpha-hemolysin toxin without compromising the toxin’s structural integrity through heating or chemical processing. Despite being intact structurally, the trapped toxoid is rendered incapable of damaging other cells.

A paper published in the December 1, 2013, online edition of the journal Nature Nanotechnology presented results from experiments in which nanosponges loaded with toxoid were used to protect mice from MRSA infection. After one injection of the vaccine, 50% of the nanosponge-treated animals survived as compared to fewer than 10% of mice that had been vaccinated with heat-inactivated toxoid. An additional two booster shots increased the survival rate for the nanosponge-vaccinated animals to 100% compared to 90% for those vaccinated with the heat-treated toxin.

"The more you heat it, the safer the toxin is, but the more you heat it, the more you damage the structure of the protein," said senior author Dr. Liangfang Zhang, professor of nanoengineering at the University of California, San Diego. "And this structure is what the immune cell recognizes, and builds its antibodies against. Before this there was no way you could deliver a native toxin to the immune cells without damaging the cells, but this technology allows us to do this."

"The nanosponge vaccine was also able to completely prevent the toxin's damages in the skin, where MRSA infections frequently take place," said Dr. Zhang. "The particles work so beautifully that it might be possible to detain several toxins at once on them, creating one vaccine against many types of pore-forming toxins, from Staphylococcus to snake venom."

Related Links:

University of California, San Diego



Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.