Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Imidazopyrazines Kill the Malaria Parasite at Every Stage of Its Life Cycle

By BiotechDaily International staff writers
Posted on 09 Dec 2013
Image: Malaria parasites (labeled with fluorescent protein) in the late stages of development, superimposed on a field of red blood cells. The many nuclei of the parasites\' daughter cells are labeled in blue, and the plasma membranes surrounding the daughter cells are labeled in green. Imidazopyrazine treatment disrupts formation of the membranes around the daughter cells (Photo courtesy of Dr. Marcus C.S. Lee, Columbia University Medical Center).
Image: Malaria parasites (labeled with fluorescent protein) in the late stages of development, superimposed on a field of red blood cells. The many nuclei of the parasites\' daughter cells are labeled in blue, and the plasma membranes surrounding the daughter cells are labeled in green. Imidazopyrazine treatment disrupts formation of the membranes around the daughter cells (Photo courtesy of Dr. Marcus C.S. Lee, Columbia University Medical Center).
An enzyme that is vital to all life stages of several species of malaria parasites has been cited as a tempting target for drug developers.

Achieving the goal of malaria elimination will depend on targeting pathways essential across all life stages of the parasite, Plasmodium. Towards this end, investigators at Columbia University Medical Center (New York, NY, USA) collaborated with an international team of researchers to screen more than a million drug compounds against the most lethal malaria parasite, Plasmodium falciparum, in order to identify compounds capable of killing the parasite at each stage of its life cycle.

They reported in the November 27, 2013, online edition of the journal Nature that the class of compounds called imidazopyrazines was capable of inhibiting the intracellular development of P. falciparum and several other species including P. vivax and P. cynomolgi at every stage of infection in the vertebrate host.

Imidazopyrazines demonstrated potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models and were active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax. In addition, they inhibited liver-stage hypnozoites in the simian parasite P. cynomolgi.

The target of imidazopyrazine inhibition was found to be the enzyme phosphatidylinositol 4-kinase (PI(4)K). Imidazopyrazines altered the intracellular distribution of phosphatidylinositol-4-phosphate in the parasite's Golgi organelle by occupying PI(4)K's ATP-binding pocket.

“We think that disrupting the function of PI(4)K at the Golgi stops the parasite from making new membranes around its daughter cells, thereby preventing the organism from reproducing,” said senior author Dr. Marcus C. S. Lee, associate research scientist in microbiology and immunology at Columbia University Medical Center.

“Perhaps the most exciting aspect of our findings is that this enzyme is required at all stages of the parasites’ life cycle in humans,” said Dr. Lee. “This is important because most antimalarials are effective at killing the parasites only as they circulate in the bloodstream. However, the parasites can hide in the liver for years before reemerging and triggering a relapse of the disease. By identifying this enzyme, we may be able to develop a new way to kill the parasites in their dormant stage.”

Related Links:

Columbia University Medical Center



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.