Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Imidazopyrazines Kill the Malaria Parasite at Every Stage of Its Life Cycle

By BiotechDaily International staff writers
Posted on 09 Dec 2013
Print article
Image: Malaria parasites (labeled with fluorescent protein) in the late stages of development, superimposed on a field of red blood cells. The many nuclei of the parasites\' daughter cells are labeled in blue, and the plasma membranes surrounding the daughter cells are labeled in green. Imidazopyrazine treatment disrupts formation of the membranes around the daughter cells (Photo courtesy of Dr. Marcus C.S. Lee, Columbia University Medical Center).
Image: Malaria parasites (labeled with fluorescent protein) in the late stages of development, superimposed on a field of red blood cells. The many nuclei of the parasites\' daughter cells are labeled in blue, and the plasma membranes surrounding the daughter cells are labeled in green. Imidazopyrazine treatment disrupts formation of the membranes around the daughter cells (Photo courtesy of Dr. Marcus C.S. Lee, Columbia University Medical Center).
An enzyme that is vital to all life stages of several species of malaria parasites has been cited as a tempting target for drug developers.

Achieving the goal of malaria elimination will depend on targeting pathways essential across all life stages of the parasite, Plasmodium. Towards this end, investigators at Columbia University Medical Center (New York, NY, USA) collaborated with an international team of researchers to screen more than a million drug compounds against the most lethal malaria parasite, Plasmodium falciparum, in order to identify compounds capable of killing the parasite at each stage of its life cycle.

They reported in the November 27, 2013, online edition of the journal Nature that the class of compounds called imidazopyrazines was capable of inhibiting the intracellular development of P. falciparum and several other species including P. vivax and P. cynomolgi at every stage of infection in the vertebrate host.

Imidazopyrazines demonstrated potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models and were active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax. In addition, they inhibited liver-stage hypnozoites in the simian parasite P. cynomolgi.

The target of imidazopyrazine inhibition was found to be the enzyme phosphatidylinositol 4-kinase (PI(4)K). Imidazopyrazines altered the intracellular distribution of phosphatidylinositol-4-phosphate in the parasite's Golgi organelle by occupying PI(4)K's ATP-binding pocket.

“We think that disrupting the function of PI(4)K at the Golgi stops the parasite from making new membranes around its daughter cells, thereby preventing the organism from reproducing,” said senior author Dr. Marcus C. S. Lee, associate research scientist in microbiology and immunology at Columbia University Medical Center.

“Perhaps the most exciting aspect of our findings is that this enzyme is required at all stages of the parasites’ life cycle in humans,” said Dr. Lee. “This is important because most antimalarials are effective at killing the parasites only as they circulate in the bloodstream. However, the parasites can hide in the liver for years before reemerging and triggering a relapse of the disease. By identifying this enzyme, we may be able to develop a new way to kill the parasites in their dormant stage.”

Related Links:

Columbia University Medical Center



Print article

Channels

Genomics/Proteomics

view channel
Image: Healthy blood cells along with sickle-cell diseased cells (Photo courtesy of Science Picture Co./Corbis).

Gene Editing Corrects Hemoglobin Defects in Beta-Thalassemia and Sickle Cell Disease

A team of hematology researchers used the CRISPR/Cas9 gene editing technique to correct the mutations that cause defective blood cell morphology in beta-thalassemia and sickle cell disease.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.