Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
BioConferenceLive

Bacteriophage Protein Shows Antibiotic Potential

By BiotechDaily International staff writers
Posted on 27 Nov 2013
Image: Electron micrograph of bacteriophages attached to a bacterial cell (Photo courtesy of Wikimedia Commons).
Image: Electron micrograph of bacteriophages attached to a bacterial cell (Photo courtesy of Wikimedia Commons).
The T7 bacteriophage produces a protein that blocks Escherichia coli cell division and has the potential of being developed into an antibiotic-replacing drug.

T7 produces over 100 progeny per host cell in less than 25 minutes. If the T7 phage infection completes a successful growth cycle, it invariably culminates in disintegration of the host cell. Bacteriophages take over host cell resources primarily via the activity of proteins expressed early in infection. One such protein produced by the T7 phage is called Gp0.4 (gene product 0.4).

Investigators at Tel Aviv University (Israel) and their colleagues at Duke University (Durham, NC, USA) reported in the November 11, 2013, online edition of the journal, Proceedings of the National Academy of Sciences of the United States of America (PNAS) that Gp0.4 was a direct inhibitor of the E. coli filamenting temperature-sensitive mutant Z division protein.

They showed that a chemically synthesized Gp0.4 bound to purified filamenting temperature-sensitive mutant Z protein and directly inhibited its assembly in vitro. Consequently, expression of Gp0.4 in vivo was lethal to E. coli cultures and resulted in bacteria that were morphologically elongated. Furthermore, the inhibition of cell division by Gp0.4 enhanced the bacteriophage’s competitive ability by enabling them to maximize their progeny number by inhibiting escape of the daughter cells of the infected bacteria.

“Bacteria are infested with bacteriophages, which are their natural enemies and which in most cases destroy them,” said senior author Dr. Udi Qimron, professor of clinical microbiology and immunology at Tel Aviv University. “Ever since the discovery of bacteriophages in the early 20th century, scientists have understood that, on the principle of the "enemy of your enemy is your friend"; medical use could be made of phages to fight bacteria.”

“GP0.4 impedes cell division in the E. coli cell. With its capacity for cell division blocked, the bacterium continues to elongate until it dies,” said Dr. Qimron. “Potentially, this protein could be the ideal antibiotic.”

Related Links:

Tel Aviv University
Duke University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.