Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Bacteriophage Protein Shows Antibiotic Potential

By BiotechDaily International staff writers
Posted on 27 Nov 2013
Image: Electron micrograph of bacteriophages attached to a bacterial cell (Photo courtesy of Wikimedia Commons).
Image: Electron micrograph of bacteriophages attached to a bacterial cell (Photo courtesy of Wikimedia Commons).
The T7 bacteriophage produces a protein that blocks Escherichia coli cell division and has the potential of being developed into an antibiotic-replacing drug.

T7 produces over 100 progeny per host cell in less than 25 minutes. If the T7 phage infection completes a successful growth cycle, it invariably culminates in disintegration of the host cell. Bacteriophages take over host cell resources primarily via the activity of proteins expressed early in infection. One such protein produced by the T7 phage is called Gp0.4 (gene product 0.4).

Investigators at Tel Aviv University (Israel) and their colleagues at Duke University (Durham, NC, USA) reported in the November 11, 2013, online edition of the journal, Proceedings of the National Academy of Sciences of the United States of America (PNAS) that Gp0.4 was a direct inhibitor of the E. coli filamenting temperature-sensitive mutant Z division protein.

They showed that a chemically synthesized Gp0.4 bound to purified filamenting temperature-sensitive mutant Z protein and directly inhibited its assembly in vitro. Consequently, expression of Gp0.4 in vivo was lethal to E. coli cultures and resulted in bacteria that were morphologically elongated. Furthermore, the inhibition of cell division by Gp0.4 enhanced the bacteriophage’s competitive ability by enabling them to maximize their progeny number by inhibiting escape of the daughter cells of the infected bacteria.

“Bacteria are infested with bacteriophages, which are their natural enemies and which in most cases destroy them,” said senior author Dr. Udi Qimron, professor of clinical microbiology and immunology at Tel Aviv University. “Ever since the discovery of bacteriophages in the early 20th century, scientists have understood that, on the principle of the "enemy of your enemy is your friend"; medical use could be made of phages to fight bacteria.”

“GP0.4 impedes cell division in the E. coli cell. With its capacity for cell division blocked, the bacterium continues to elongate until it dies,” said Dr. Qimron. “Potentially, this protein could be the ideal antibiotic.”

Related Links:

Tel Aviv University
Duke University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

Researchers Discover New Data on Protein Kinase A

By employing X-rays and neutron beams, a team of researchers have gleaned new information about protein kinase A (PKA), an omnipresent master control protein that helps regulate basic cellular functions such as energy consumption and interactions with neurotransmitters, hormones, and drugs. The scientists who conducted... Read more

Lab Technologies

view channel
Image: The UC Santa Cruz Ebola Genome Portal contains links to the newly created Ebola browser and to scientific literature on the deadly virus (Photo courtesy of UCSC).

Ebola Genome Browser Now Online to Help Scientists’ Respond to Crisis

A US genomics institute has just released a new Ebola genome browser to help international researchers develop a vaccine and antiserum to help stop the spread of the Ebolavirus. The investigators led... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.