Features Partner Sites Information LinkXpress
Sign In
Demo Company

Small Molecule TWEAK-Fn14 Inhibitors Block Cancer Growth

By BiotechDaily International staff writers
Posted on 21 Nov 2013
Print article
Image: Immunohistochemistry of TWEAK in human brain tissue (Photo courtesy of Sigma-Aldrich Inc.).
Image: Immunohistochemistry of TWEAK in human brain tissue (Photo courtesy of Sigma-Aldrich Inc.).
Drug developers have identified a series of small molecules that block the interaction of the cytokine TWEAK (TNF-related weak inducer of apoptosis) with its receptor Fn14 (fibroblast growth factor-inducible 14), which slows growth of brain, breast, pancreatic, esophageal, lung, and liver cancers.

TWEAK is a cytokine protein that belongs to the tumor necrosis factor (TNF) family and is a ligand for the Fn14/TWEAKR receptor. This cytokine has overlapping signaling functions with TNF, but displays a much wider tissue distribution. TWEAK can induce apoptosis via multiple pathways of cell death in a cell type-specific manner. This cytokine is also found to promote proliferation and migration of endothelial cells, and thus acts as a regulator of angiogenesis. Overexpression of TWEAK-Fn14 activation has been linked to tissue damage and degradation, including autoimmune diseases, as well as the survival, migration, and invasion of cancer cells.

Investigators at the Translational Genomics Research Institute (Phoenix, AZ, USA) used computer-generated protein-protein docking models to design a targeted library of small molecules predicted to disrupt the TWEAK-Fn14 interaction.

Results published in the November 8, 2013, issue of the Journal of Biological Chemistry described a group of 129 small molecules that produced up to 37% inhibition of TWEAK-Fn14 binding. Four molecules were found to be particularly potent; including compound L524-0366, which completely suppressed TWEAK-induced brain cancer-cell migration without any potential cytotoxic effects.

"Our results show that the TWEAK-Fn14 interaction is a viable drug target, and they provide the foundation for further exploration of this system in researching invasive cancers," said co-senior author Dr. Nhan Tran, associate professor of cancer and cell biology at the Translational Genomics Research Institute. "Because of its unique qualities and association with acute injuries, this drug-like molecule not only could benefit cancer patients, but also might be applied to patients with autoimmunity, heart disease like atherosclerosis, and rheumatoid arthritis."

Related Links:

Translational Genomics Research Institute

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.