Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Vegetable Compound Found to Protect Against Radiation

By BiotechDaily International staff writers
Posted on 28 Oct 2013
Researchers have reported that a compound found in cruciferous vegetable such as cauliflower, cabbage, and broccoli shields rats and mice from lethal doses of radiation.

Their study, published October 15, 2013, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) suggests the compound, already demonstrated to be safe for humans, may protect healthy tissues during radiotherapy for cancer treatment and prevent or lessen sickness caused by radiation exposure.

The compound, known as DIM (3,3'-diindolylmethane), previously has been found to have cancer preventive properties. “DIM has been studied as a cancer prevention agent for years, but this is the first indication that DIM can also act as a radiation protector,” stated the study’s corresponding author, Eliot Rosen, MD, PhD, of Georgetown University Lombardi Comprehensive Cancer Center (Washington DC, USA).

The scientists irradiated rats in the study with lethal doses of gamma ray radiation. The animals were then treated with a daily injection of DIM for two weeks, starting 10 minutes after the radiation exposure. The result was amazing, according to Dr. Rosen, a professor of oncology, biochemistry, cell and molecular biology, and radiation medicine. “All of the untreated rats died, but well over half of the DIM-treated animals remained alive 30 days after the radiation exposure.”

Dr. Rosen added that DIM also provided protection whether the first injection was administered 24 hours before or up to 24 hours after radiation exposure. “We also showed that DIM protects the survival of lethally irradiated mice,” Dr. Rosen said. Furthermore, irradiated mice treated with DIM had less reduction in red blood cells, white blood cells and platelets—side effects often seen in patients undergoing radiation treatment for cancer.

Dr. Rosen noted that this study revealed two potential uses of the compound. “DIM could protect normal tissues in patients receiving radiation therapy for cancer, but could also protect individuals from the lethal consequences of a nuclear disaster.”

Rosen and study coauthors Saijun Fan, PhD, and Milton Brown, MD, PhD, are co-inventors on a patent application that has been filed by Georgetown University for the use of DIM and DIM-related compounds as radioprotectors.

Related Links:
Georgetown University Lombardi Comprehensive Cancer Center



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.