Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Vegetable Compound Found to Protect Against Radiation

By BiotechDaily International staff writers
Posted on 28 Oct 2013
Researchers have reported that a compound found in cruciferous vegetable such as cauliflower, cabbage, and broccoli shields rats and mice from lethal doses of radiation.

Their study, published October 15, 2013, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) suggests the compound, already demonstrated to be safe for humans, may protect healthy tissues during radiotherapy for cancer treatment and prevent or lessen sickness caused by radiation exposure.

The compound, known as DIM (3,3'-diindolylmethane), previously has been found to have cancer preventive properties. “DIM has been studied as a cancer prevention agent for years, but this is the first indication that DIM can also act as a radiation protector,” stated the study’s corresponding author, Eliot Rosen, MD, PhD, of Georgetown University Lombardi Comprehensive Cancer Center (Washington DC, USA).

The scientists irradiated rats in the study with lethal doses of gamma ray radiation. The animals were then treated with a daily injection of DIM for two weeks, starting 10 minutes after the radiation exposure. The result was amazing, according to Dr. Rosen, a professor of oncology, biochemistry, cell and molecular biology, and radiation medicine. “All of the untreated rats died, but well over half of the DIM-treated animals remained alive 30 days after the radiation exposure.”

Dr. Rosen added that DIM also provided protection whether the first injection was administered 24 hours before or up to 24 hours after radiation exposure. “We also showed that DIM protects the survival of lethally irradiated mice,” Dr. Rosen said. Furthermore, irradiated mice treated with DIM had less reduction in red blood cells, white blood cells and platelets—side effects often seen in patients undergoing radiation treatment for cancer.

Dr. Rosen noted that this study revealed two potential uses of the compound. “DIM could protect normal tissues in patients receiving radiation therapy for cancer, but could also protect individuals from the lethal consequences of a nuclear disaster.”

Rosen and study coauthors Saijun Fan, PhD, and Milton Brown, MD, PhD, are co-inventors on a patent application that has been filed by Georgetown University for the use of DIM and DIM-related compounds as radioprotectors.

Related Links:
Georgetown University Lombardi Comprehensive Cancer Center



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: To adhere to catheters and start urinary tract infections, bacteria extend microscopic fibers with sticky proteins at their ends. Researchers have developed a vaccine that blocks the EbpA protein, visible as a white bulge above, and stops infections in mice (Photo courtesy of Dr. John Heuser, Washington University School of Medicine).

Blocking Binding of Bacteria to Fibrinogen Prevents Biofilm Formation and Catheter-Associated Bladder Infection in Mice

A team of molecular microbiologists has identified and targeted a critical step in biofilm formation and developed a vaccine that prevents catheter-associated urinary tract infections in mice.... Read more

Drug Discovery

view channel
Image: S-649266 has more robust antibacterial activity than established antibiotics against multidrug-resistant bacteria (Photo courtesy of Shionogi).

Novel Antibiotic Shows Potential for Broad Range of Infections

The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. In order to treat bacterial... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.