Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Scientists Unravel Antibacterial Mechanisms of Plasma Components

By BiotechDaily International staff writers
Posted on 10 Oct 2013
Image: Plasma Reactor – cold atmospheric-pressure plasmas are generated and tested for effects on bacterial cells and molecules (Photo courtesy of Jan-Wilm Lackmann, Ruhr University Bochum.)
Image: Plasma Reactor – cold atmospheric-pressure plasmas are generated and tested for effects on bacterial cells and molecules (Photo courtesy of Jan-Wilm Lackmann, Ruhr University Bochum.)
Scientists have unraveled the main mechanisms of the antibacterial action of cold atmospheric-pressure plasmas, further indicating their potential value as disinfection and antibiotic agents.

As they destroy bacteria very efficiently, atmospheric-pressure plasmas constitute an alternative to chemical disinfectants and are already being used as surgical tools, for example in nasal and intestinal polyp extraction. Their disinfectant properties may also be of interest for other applications, including wound treatment, cosmetic care, and in certain uses even as alternatives to antibiotics. “In ten years, bacteria might have developed resistance against all antibiotics that are available to us today,” said Junior Professor Dr. Julia Bandow, head of the Junior Research Group Microbial Antibiotic Research at Ruhr-Universität Bochum (Ruhr University Bochum (RUB); Bochum, Germany). Without antibiotics, most surgeries would become impossible due to high infection rates.

Cold atmospheric-pressure plasmas attack the prokaryote cell envelope, proteins, and DNA. “This is too great a challenge for the repair mechanisms and the stress response systems of bacteria,” said Prof. Bandow; “In order to develop plasmas for specific applications, for example for treating chronic wounds or for root canal disinfection, it is important to understand how they affect cells. Thus, undesirable side effects may be avoided right from the start.”

Effects of the plasma-emitted particles have now been investigated by a team of biologists, plasma physicists, and chemists at RUB. Depending on their specific composition, plasmas may contain different components, for example ions, radicals, or light in the ultraviolet spectrum—UV photons. Until now, scientists have had almost no understanding about which components of the complex mixture contribute to which extent to the antibacterial effect. Prof. Bandow’s team has analyzed the effect of reactive particles (radicals and ozone) and UV photons on both the cellular level and on the level of single biomolecules, namely DNA and proteins. On the cellular level, the reactive particles alone were most effective: they destroyed the cell envelope (UV radiation did not). On the molecular level, both plasma components were effective: both UV radiation and reactive particles damaged the DNA; in addition, the reactive particles inactivated proteins. Thus, damage to the cellular envelope as well as to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma.

The study was published September 25, 2013, in the Journal of the Royal Society Interface.

Related Links:

Ruhr University Bochum



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A scheme for the generation of induced pluripotent stem cells (IPSC). (1) Isolate and culture donor cells. (2) Transfect stem cell-associated genes into the cells by viral vectors. Red cells indicate the cells expressing the exogenous genes. (3)  Harvest and culture the cells using mitotically inactivated feeder cells. (4) A small subset of the transfected cells forms iPSC cell colonies (Photo courtesy of Wikimedia Commons).

Innovative Technique Produces More Reliable Pluripotent Stem Cells

A recent paper described a more reliable way to induce the formation of pluripotent stem cells (iPSCs) from adult cells in a mouse model. Reliable high-quality iPSCs are needed for the development of... Read more

Drug Discovery

view channel
Image: S-649266 has more robust antibacterial activity than established antibiotics against multidrug-resistant bacteria (Photo courtesy of Shionogi).

Novel Antibiotic Shows Potential for Broad Range of Infections

The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. In order to treat bacterial... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.