Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Nanostring Technique Identifies Potential Melanoma Immunotherapy Targets

By BiotechDaily International staff writers
Posted on 23 Sep 2013
An advanced "nanostring" DNA expression analysis technique detected seven genes that are potential immunotherapy targets for the treatment of melanoma and could increase the number of patients potentially eligible for adoptive immunotherapy.

Nanostring technology is a variation of the DNA microarray that uses molecular "barcodes" and microscopic imaging to detect and count up to several hundred unique transcripts in one hybridization reaction. Each color-coded barcode is attached to a single target-specific probe corresponding to a gene of interest.

Investigators at the [US] National Cancer Institute (Bethesda, MD, USA) designed a nanostring probe set containing 97 genes, 72 of which were considered potential candidate genes for immunotherapy. Five established melanoma cell lines, 59 resected metastatic melanoma tumors, and 31 normal tissue samples were profiled and analyzed using the nanostring technique.

Results published in the September 10, 2013, online edition of the journal Clinical Cancer Research revealed that of the 72 potential target genes, 33 were overexpressed in more than 20% of studied melanoma tumor samples. Twenty of those genes were identified as differentially expressed between normal tissues and tumor samples. Analysis of normal tissue gene expression identified seven genes with limited normal tissue expression that warranted further consideration as potential immunotherapy target antigens: CSAG2, MAGEA3, MAGEC2, IL13RA2, PRAME, CSPG4, and SOX10. These genes were highly overexpressed on a large percentage of the studied tumor samples, with expression in a limited number of normal tissue samples at much lower levels.

“We identified seven potential candidate genes that deserve further consideration as targets for melanoma immunotherapy,” said senior author Dr. Richard Morgan, a researcher in the tumor immunology section of the [US] National Cancer Institute. “We used nanostring technology because it is very robust, yielding quantitative and extremely reproducible results and, in addition, an antigen expression profile can be constructed for a patient from a very small amount of tumor sample, which makes nanostring a better clinical tool.”

“Our laboratory has developed a battery of different antigen receptors to target a wide range of antigens, and we can engineer human immune cells to recognize the targets in patients’ tumors and kill those cells,” said Dr. Morgan. “This is a good example of how newer technologies like nanostring arm cancer researchers and clinicians with the best gear to make tremendous advancements in cancer research and treatment.”

Related Links:
[US] National Cancer Institute


comments powered by Disqus

Channels

Drug Discovery

view channel
Image: (Left) Neurons in brains from people with autism do not undergo normal pruning during childhood and adolescence. The images show representative neurons from unaffected brains (left) and brains from autistic patients (right); the spines on the neurons indicate the location of synapses (Photo courtesy of Guomei Tang, PhD and Mark S. Sonders, PhD, Columbia University Medical Center).

Autistic Youngsters Found to Have Too Many Brain Synapses

Autistic children and adolescents have been shown to have an excess of brain synapses, and this is due to a slowdown in the normal brain “trimming” process during development, according to new findings.... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Assessing Myeloma Progression Using Calcium Isotope Analysis

Scientists are revealing how an Earth science research principle can be used in biomedical situations to predict the development of disease. The researchers evaluated a new approach to detecting bone loss in cancer patients by using calcium isotope analysis to predict whether myeloma patients are at risk for developing... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.