Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Nonreplicating Virus Kills Leukemia in Mouse and Culture Models

By BiotechDaily International staff writers
Posted on 27 Aug 2013
Image: Electron micrograph depicts the rhabdovirus responsible for vesicular stomatitis (VS) in horses, cattle, and pigs. An inactivated rhabdovirus was used in recent studies to destroy leukemia cells (Photo couryesy of the [US] Centers for Disease Control (CDC)).
Image: Electron micrograph depicts the rhabdovirus responsible for vesicular stomatitis (VS) in horses, cattle, and pigs. An inactivated rhabdovirus was used in recent studies to destroy leukemia cells (Photo couryesy of the [US] Centers for Disease Control (CDC)).
A biopharmaceutical drug comprising nonreplicating virus particles killed leukemia cells in a mouse leukemia model and in cultures of cells taken from patients with multiple drug resistant forms of the disease.

Investigators at the University of Ottawa (Canada) speculated that high doses on a nonreplicating virus would be able to kill blood cancer cells without the dangers inherent in the use of fully competent live viruses. Toward this end they developed a method based on attenuation with UV light to produce unique high-titer bioactive yet nonreplicating rhabdovirus-derived particles (NRRPs).

This novel NRRP bio-drug was shown in a paper published in the July 12, 2013, online edition of Blood Cancer Journal to possess direct cytolytic and immunomodulatory activity against acute leukemia. In a mouse model of leukemia treated with the NRRPs 80% of the mice had markedly prolonged survival and 60% were eventually cured of the disease, while all of the untreated mice died of leukemia within 20 days.

In laboratory cultures, NRRP resistance in normal cells was mediated by intact antiviral defenses including interferon (IFN). In contrast, NRRPs administered cell cultures derived from clinical samples obtained from patients with high-burden multidrug-resistant acute myeloid leukemia killed the cancer cells.

"Our research indicated that a replicating virus might not be the safest or most effective approach for treating leukemia, so we decided to investigate whether we could make virus-derived particles that no longer replicate but still kill cancer," said senior author Dr. David Conrad, a doctor candidate in cellular and molecular medicine at the University of Ottawa. "We were delighted to see that this novel therapy was very safe at high doses, and worked extremely well in our laboratory leukemia models. We hope to test this in patients in the near future."

"Leukemia is a devastating disease that can be very difficult to treat, and new therapies are urgently needed," said Dr. Conrad. "While we are still at the early stages of this research, I think this therapy holds a lot of promise because it appears to have a potent, long-lasting effect on leukemia without the debilitating side effects of many cancer therapies used in the clinic right now. We will likely see even better results once we optimize the dose in our preparations to advance this research into human clinical trials."

Related Links:
University of Ottawa


WATERS CORPORATION

Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.