Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Drug Development Cooperation Yields Synthetic Route for Anti-Skin Cancer Compounds

By BiotechDaily International staff writers
Posted on 12 Aug 2013
Image: Investigators at The Scripps Research Institute have achieved the first efficient chemical synthesis of ingenol, a highly complex, anticancer substance found in the Euphorbia genus of plant, whose milky sap has long been used in traditional medicine (Photo courtesy of the Scripps Research Institute).
Image: Investigators at The Scripps Research Institute have achieved the first efficient chemical synthesis of ingenol, a highly complex, anticancer substance found in the Euphorbia genus of plant, whose milky sap has long been used in traditional medicine (Photo courtesy of the Scripps Research Institute).
Cooperation between a Danish pharmaceutical company and a renowned American research institute has resulted in development of a method for chemical synthesis of the anticancer drug ingenol, which up to now could only be inefficiently extracted from plant materials.

Ingenol is a diterpenoid with unique architecture and has derivatives possessing important anticancer activity, including the recently [US] Food and Drug Administration–approved Picato (ingenol mebutate), a first-in-class drug for the treatment of the precancerous skin condition actinic keratosis. Ingenol mebutate, which is applied topically, can destroy precancerous skin cells with unusual swiftness, while sparing healthy skin cells. The treatment has a direct cancer-cell-killing effect, and also induces an inflammatory reaction. Currently, the compound is extracted inefficiently from the plant Euphorbia peplus.

Investigators at the Danish pharmaceutical company LEO Pharma (Ballerup Denmark), the manufacturer of Picato, recently collaborated with colleagues at The Scripps Research Institute (La Jolla, CA, USA) in an attempt to arrive at method for chemical synthesis of the drug.

They reported in the August 1, 2013, online edition of the journal Science Express that they had succeeded in developing a 14-step synthetic method beginning with inexpensive (+)-3-carene and employing a two-phase design (syntheses of ingenol had been described in the past, but they all required more than 37 steps). This newly described synthesis allowed for the creation of fully synthetic analogs of bioactive ingenol derivatives and provided a strategic blueprint for chemical production.

These results validated the concept of two-phase terpene total synthesis as not only an academic curiosity, but also a viable alternative to isolation or bioengineering for the efficient preparation of polyoxygenated terpenoids at the limits of chemical complexity.

“I think that most organic chemists had considered ingenol beyond the reach of scalable chemical synthesis,” said senior author Dr. Phil S. Baran, professor of chemistry at The Scripps Research Institute. “With this study we rebut that argument conclusively, and there are many other complex natural compounds waiting to be synthesized using a strategy like ours—this is really just a glimpse of the future of chemical synthesis.”

“At the time, the only way to get the product was by a relatively lengthy extraction process from the E. peplus plant,” said Michael Sierra, director of external discovery at LEO Pharma. “We were hoping to get a more efficient synthetic route for production, as well as a method that would allow us to make new derivatives. It is a pretty amazing feat: the total synthesis of ingenol within a year and a half of starting our collaboration. It is great to work with a research group like this.”

Related Links:
Leo Pharma
The Scripps Research Institute



BIOSIGMA S.R.L.
SLAS - Society for Laboratory Automation and Screening
RANDOX LABORATORIES
comments powered by Disqus

Channels

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: On target: When researchers introduced nanobodies they made to cells engineered to express a tagged version of a protein in skeletal fibers known as tubulin (red), the nanobodies latched on. The cells above have recently divided (Photo courtesy of Rockefeller University).

Turning Antibodies into Precisely Tuned Nanobodies

New technology has the potential to create nanobodies making them much more accessible than antibodies for all sorts of research. Antibodies control the process of recognizing and zooming in on molecular... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.