Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Inhibition of TGF-Beta Signaling Potential Treatment for Chronic Allergies

By BiotechDaily International staff writers
Posted on 08 Aug 2013
Image: Aberrant signaling by transforming growth factor-beta, or TGF-beta, may be responsible for disrupting the way immune cells respond to common foods and environmental allergens, leading to a wide range of allergic disorders, shows new research from Johns Hopkins (Photo courtesy of the [US] National Cancer Institute).
Image: Aberrant signaling by transforming growth factor-beta, or TGF-beta, may be responsible for disrupting the way immune cells respond to common foods and environmental allergens, leading to a wide range of allergic disorders, shows new research from Johns Hopkins (Photo courtesy of the [US] National Cancer Institute).
Mutations in the genes encoding receptor subunits for TGF-beta (transforming growth factor-beta), TGFBR1 and TGFBR2, have been linked to the development of allergic diseases, including asthma, food allergy, eczema, allergic rhinitis, and eosinophilic gastrointestinal disease.

To study the linkage between TGF-beta and allergy investigators at Johns Hopkins University (Baltimore, MD, USA) worked with a group of children aged 7 to 20 with Loeys–Dietz syndrome (LDS). Loeys–Dietz syndrome is a recently-discovered autosomal dominant genetic syndrome which has many features similar to Marfan syndrome, but which is caused by mutations in the genes encoding transforming growth factor-beta receptor 1 (TGFBR1) or 2 (TGFBR2).

The investigators reported in the July 24, 2013, issue of the journal Science Translational Medicine that patients with LDS were strongly predisposed to develop allergic diseases. The LDS patients exhibited elevated immunoglobulin E levels, eosinophil counts, and T helper 2 (TH2) cytokines in their plasma. They had an increased frequency of CD4+ T cells that expressed both Foxp3 and interleukin-13, but retained the ability to suppress effector T cell proliferation.

"Disruption in TGF-beta signaling does not simply nudge immune cells to misbehave but appears to singlehandedly unlock the very chain reaction that eventually leads to allergic disease," said senior investigator Dr. Harry C. Dietz, professor of genetic medicine at Johns Hopkins University.

Findings obtained during the course of this study highlight the potential therapeutic benefit of strategies that inhibit TGF-beta signaling in the treatment of chronic allergic disorders.

Related Links:

Johns Hopkins University



WATERS CORPORATION

Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.