Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Nanovesicle Drug Slips Through the Blood-brain Barrier to Selectively Target Brain Cancer Cells

By BiotechDaily International staff writers
Posted on 30 Jul 2013
Nanovesicles composed of the detergent saposin C-dioleoylphosphatidylserine (SapC-DOPS) that kill cancer cells by binding to phospholipid phosphatidylserine (PtdSer) residues exposed on the cells' surface membrane have the ability to cross the blood-brain barrier and destroy brain cancers such as glioblastoma multiforme (GBM).

GBM is an aggressive brain tumor, fatal within one year from diagnosis in most patients despite intensive treatment with surgery, radiation, and chemotherapy. The migratory and microscopically invasive nature of GBM as well as its resistance to chemotherapy renders conventional therapies inadequate in its treatment. Furthermore, brain cancer cells are protected by the blood-brain barrier, which prevents conventional drugs from reaching the tumor.

Investigators at Ohio State University (Columbus, USA) treated two different brain cancer-mouse models with the nanotech drug SapC-DOPS. They reported in the June 4, 2013, online edition of the journal Molecular Therapy that SapC-DOPS selectively and effectively crossed the blood-brain tumor barrier to target brain tumors in vivo and that the targeting was contingent on the exposure of the anionic phospholipid PtdSer on the surface of the cancer cells.

SapC-DOPS binding induced apoptosis in the tumor cells, and increased cell surface expression of PtdSer levels was found to correlate with SapC-DOPS-induced killing efficacy. Tumor targeting in vivo was inhibited by blocking PtdSer exposed on cells. In addition to its cancer cell killing ability, SapC-DOPS also exerted a strong antiangiogenic activity in vitro and in vivo.

“Few drugs have the capacity to cross the tumor blood-brain barrier and specifically target tumor cells,” said contributing author Dr. Balveen Kaur, associate professor of neurological surgery at Ohio State University. “Our preclinical study indicates that SapC-DOPS does both and inhibits the growth of new tumor blood vessels, suggesting that this agent could one day be an important treatment for glioblastoma and other solid tumors. Based on our findings, we speculate that SapC-DOPS could have a synergistic effect when combined with chemotherapy or radiation therapy, both of which are known to increase the levels of exposed PtdSer on cancer cells.”

Related Links:

Ohio State University




comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.