Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

Nanovesicle Drug Slips Through the Blood-brain Barrier to Selectively Target Brain Cancer Cells

By BiotechDaily International staff writers
Posted on 30 Jul 2013
Nanovesicles composed of the detergent saposin C-dioleoylphosphatidylserine (SapC-DOPS) that kill cancer cells by binding to phospholipid phosphatidylserine (PtdSer) residues exposed on the cells' surface membrane have the ability to cross the blood-brain barrier and destroy brain cancers such as glioblastoma multiforme (GBM).

GBM is an aggressive brain tumor, fatal within one year from diagnosis in most patients despite intensive treatment with surgery, radiation, and chemotherapy. The migratory and microscopically invasive nature of GBM as well as its resistance to chemotherapy renders conventional therapies inadequate in its treatment. Furthermore, brain cancer cells are protected by the blood-brain barrier, which prevents conventional drugs from reaching the tumor.

Investigators at Ohio State University (Columbus, USA) treated two different brain cancer-mouse models with the nanotech drug SapC-DOPS. They reported in the June 4, 2013, online edition of the journal Molecular Therapy that SapC-DOPS selectively and effectively crossed the blood-brain tumor barrier to target brain tumors in vivo and that the targeting was contingent on the exposure of the anionic phospholipid PtdSer on the surface of the cancer cells.

SapC-DOPS binding induced apoptosis in the tumor cells, and increased cell surface expression of PtdSer levels was found to correlate with SapC-DOPS-induced killing efficacy. Tumor targeting in vivo was inhibited by blocking PtdSer exposed on cells. In addition to its cancer cell killing ability, SapC-DOPS also exerted a strong antiangiogenic activity in vitro and in vivo.

“Few drugs have the capacity to cross the tumor blood-brain barrier and specifically target tumor cells,” said contributing author Dr. Balveen Kaur, associate professor of neurological surgery at Ohio State University. “Our preclinical study indicates that SapC-DOPS does both and inhibits the growth of new tumor blood vessels, suggesting that this agent could one day be an important treatment for glioblastoma and other solid tumors. Based on our findings, we speculate that SapC-DOPS could have a synergistic effect when combined with chemotherapy or radiation therapy, both of which are known to increase the levels of exposed PtdSer on cancer cells.”

Related Links:

Ohio State University




comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: In the liver tissue of obese animals with type II diabetes, unhealthy, fat-filled cells are prolific (small white cells, panel A). After chronic treatment through FGF1 injections, the liver cells successfully lose fat and absorb sugar from the bloodstream (small purple cells, panel B) and more closely resemble cells of normal, non-diabetic animals (Photo courtesy of the Salk Institute for Biological Studies).

Fibroblast Growth Factor 1 Treatment Restores Glucose Control in Mouse Diabetes Model

A "vaccine" based on the metabolic regulator fibroblast growth factor 1 (FGF1) removed the insulin resistance that characterizes type II diabetes and restored the body's natural ability to manage its glucose... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel

Precise Ion Irradiation Dosing Method Developed for Cancer Therapy

Scientists are employing nuclear physics principles to provide more effective approaches to radiotherapy treatment for cancer patients. Radiation therapy using heavy ions is best suitable for cancer patients with tumors that are difficult to access, such as in the brain. These particles scarcely damage the penetrated... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.