Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Positively Charged Anticancer Nanoparticles Accumulate in the Acidic Microenvironment of a Tumor

By BiotechDaily International staff writers
Posted on 24 Jul 2013
Nanoparticles containing an anticancer drug within a weak polybase sphere accumulate inside tumors where the acidic environment promotes their retention and induces swelling, which enhances delivery of the chemotherapeutic load.

Investigators at Purdue University (West Lafayette, IN, USA) coined the term "pH phoresis" to describe the tendency of nanoparticles composed of weak polybases (such as polyamines) to migrate to areas of negative charge when exposed to a pH gradient.

Furthermore, in regions of lower pH—such as in the pH 6.5-6.9 microenvironment surrounding a tumor—increased protonation of the amines in the shell cause them to repel each other, which forces the particles to expand in size. Doubling the size of the particles would, in theory, result in a similar increase in the efficiency of drug delivery to tumors.

"This phenomenon, which we term pH phoresis, may provide a useful mechanism for improving the delivery of drugs to cancer cells in solid tumor tissues," said first author Dr. You-Yeon Won, associate professor of chemical engineering at Purdue University. "Such an effect would be a game changer by delivering the proper dose of anticancer drugs inside tumor cells. This pH phoresis concept also could be combined readily within other established drug-delivery methodologies, making it potentially practical for medical application."

Related Links:
Purdue University




BIOSIGMA S.R.L.
RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A 3-dimensional picture reveals how the antibodies in the experimental drug Zmapp bind to Ebola virus (Photo courtesy of the Scripps Research Institute).

Electron Microscope Imaging Shows How Experimental Anti-Ebola Drug Works

Electron microscope imaging has revealed how the experimental drug ZMapp binds to the Ebolavirus and provides insights into how the drug prevents growth of the pathogen. ZMapp, which was developed by... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.