Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Positively Charged Anticancer Nanoparticles Accumulate in the Acidic Microenvironment of a Tumor

By BiotechDaily International staff writers
Posted on 24 Jul 2013
Nanoparticles containing an anticancer drug within a weak polybase sphere accumulate inside tumors where the acidic environment promotes their retention and induces swelling, which enhances delivery of the chemotherapeutic load.

Investigators at Purdue University (West Lafayette, IN, USA) coined the term "pH phoresis" to describe the tendency of nanoparticles composed of weak polybases (such as polyamines) to migrate to areas of negative charge when exposed to a pH gradient.

Furthermore, in regions of lower pH—such as in the pH 6.5-6.9 microenvironment surrounding a tumor—increased protonation of the amines in the shell cause them to repel each other, which forces the particles to expand in size. Doubling the size of the particles would, in theory, result in a similar increase in the efficiency of drug delivery to tumors.

"This phenomenon, which we term pH phoresis, may provide a useful mechanism for improving the delivery of drugs to cancer cells in solid tumor tissues," said first author Dr. You-Yeon Won, associate professor of chemical engineering at Purdue University. "Such an effect would be a game changer by delivering the proper dose of anticancer drugs inside tumor cells. This pH phoresis concept also could be combined readily within other established drug-delivery methodologies, making it potentially practical for medical application."

Related Links:
Purdue University




Channels

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.