Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Smart Nanofiber Therapy Effective in Fighting Cancer

By BiotechDaily International staff writers
Posted on 23 Jul 2013
Japanese scientists reported that integrating magnetic nanoparticles with an anticancer agent into crosslinked polymer nanofibers offers a twofold treatment for cancer therapy with lessened side effects.

Stimuli-responsive or “smart” polymeric nanofibers have spurred increasing interest. The nanoscale structures give rise to high sensitivity to stimuli while they can also be manipulated easily as macroscopic materials. Researchers from the Materials and Science Engineering Graduate School of Pure and Applied Science of the University of Tsukuba (Tsukuba, Japan) and the National Institute of Materials Science (NIMS; Tsukuba, Ibaraki, Japan) now have revealed how they can be used to utilize magnetic nanoparticles to enhance hyperthermal effects for treating cancer while avoiding the typical side-effects. The incorporation of doxorubicin in the nanofibers as well allows controlled release of the anticancer drug as a further mechanism for killing cancer cells.

Magnetic nanoparticles can kill cancer cells through the heat generated by induction when subjected to an alternating magnetic field. Such hyperthermal treatments have also been shown to improve the effectiveness of anticancer drugs. However, the nanoparticles can also lead to impaired mitochondrial function, inflammation, and DNA damage. Incorporating the nanoparticles into nanofibers may provide a better approach.

Drs. Young-Jin Kim, Mitsuhiro Ebara, and Takao Aoyagi electro-spun the fibers from a solution of the polymer poly(NIPAAm-co-HMAAm) mixed with a solution of magnetic nanoparticles and doxorubicin. The heating caused by the nanoparticles when switching on an alternating magnetic field caused hyperthermal effects, as well as reversible decreased swelling and deformation of the fibers, which released the drug molecules. In vitro and cell line research was shown to effectively destroy the cancer cells, which was greatly reduced for hyperthermal treatments alone in the absence of doxorubicin.

“The doxorubicin/magnetic-nanoparticles nanofiber induced the apoptosis of cancer cells due to a synergistic effect of chemotherapy and hyperthermia,” reported the authors, who published their findings online June 14, 2013, in the journal Advanced Functional Materials. The study demonstrates how smart nanofibers have potential for use as a manipulative material that combines hyperthermia and drug release treatments that can be controlled with the simple switching on or off of an alternating magnetic field.

Related Links:

University of Tsukuba
National Institute of Materials Science



Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.