Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

New Chemotherapeutic Approach Will Selectively Starve Cancer Cells

By BiotechDaily International staff writers
Posted on 21 Jul 2013
Print article
Blocking the activity of the enzyme eukaryotic elongation factor 2 kinase (eEF2K), which is found in cancer cells but not in normal cells, prevents tumors from adapting to nutrient deprivation and may represent a new chemotherapeutic approach.

The eEF2K enzyme is an essential factor for protein synthesis. It promotes the GTP-dependent translocation of the growing protein chain from the A-site to the P-site of the ribosome. This protein is completely inactivated by EF2 kinase phosphorylation.

EEF2K, which is activated by AMP-kinase (AMPK), has been shown to confer cell survival under acute nutrient depletion by blocking translation elongation. It is expressed in a number of tissues, including the liver, brain, and skeletal muscle. The net effect of AMPK activation is stimulation of hepatic fatty acid oxidation and ketogenesis, inhibition of cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibition of adipocyte lipolysis and lipogenesis, stimulation of skeletal muscle fatty acid oxidation and muscle glucose uptake, and modulation of insulin secretion by pancreatic beta cells.

Investigators at the University of Southampton (United Kingdom) reported in the May 23, 2013, issue of the journal Cell that tumor cells exploit the AMPK-eEF2K pathway to adapt to nutrient deprivation. Adaptation of cancer cells to nutrient withdrawal was found to be severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme.

Contributing author Dr. Christopher G. Proud, professor of biological sciences at the University of Southampton said, "Cancer cells grow and divide much more rapidly than normal cells, meaning they have a much higher demand for and are often starved of, nutrients and oxygen. We have discovered that a cellular component, eEF2K, plays a critical role in allowing cancer cells to survive nutrient starvation, whilst normal, healthy cells do not usually require eEF2K in order to survive. Therefore, by blocking the function of eEF2K, we should be able to kill cancer cells, without harming normal, healthy cells in the process."

"Protein synthesis – the creation of proteins within cells –is a fundamental process that enables cells to grow, divide, and function," said Dr. Proud. "If it goes wrong, it can contribute to the development of cancer. We are interested in how defects in this process can cause cancers and other diseases."

Related Links:

University of Southampton



Print article

Channels

Drug Discovery

view channel
Image: A scanning electron microscope (SEM) image of methicillin-resistant Staphylococcus aureus bacteria (Photo courtesy of the CDC).

Drug Combination Cures MRSA Infection While Preventing Development of Resistance

Treatment with a combination comprising the well-known antibiotic cefdinir and the experimental drug TXA709 cured mice of drug-resistant staphylococcal infections while reducing the development of resistance.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A three-dimensional printer adapted for stem cell production (Photo courtesy of Nano Dimension).

Israeli Developers Demonstrate Prototype Three-Dimensional Bioprinter

Two Israeli companies have combined efforts in the development of three-dimensional printer technology for the production of stem cells. The three-dimensional print electronics developer Nano Dimension... Read more

Business

view channel

Acquisition to Boost Development of Drugs for Neurogenic Conditions

According to a recent announcement, a privately held biotechnology/drug development company is to be acquired by one of the major pharmaceutical manufacturers. The drug manufacturer Merck & Co. (Kenilworth, NJ, USA) has agreed to pay 500 million USD up front for Afferent Pharmaceuticals (San Mateo, CA, USA) and up... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.