Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

New Chemotherapeutic Approach Will Selectively Starve Cancer Cells

By BiotechDaily International staff writers
Posted on 21 Jul 2013
Blocking the activity of the enzyme eukaryotic elongation factor 2 kinase (eEF2K), which is found in cancer cells but not in normal cells, prevents tumors from adapting to nutrient deprivation and may represent a new chemotherapeutic approach.

The eEF2K enzyme is an essential factor for protein synthesis. It promotes the GTP-dependent translocation of the growing protein chain from the A-site to the P-site of the ribosome. This protein is completely inactivated by EF2 kinase phosphorylation.

EEF2K, which is activated by AMP-kinase (AMPK), has been shown to confer cell survival under acute nutrient depletion by blocking translation elongation. It is expressed in a number of tissues, including the liver, brain, and skeletal muscle. The net effect of AMPK activation is stimulation of hepatic fatty acid oxidation and ketogenesis, inhibition of cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibition of adipocyte lipolysis and lipogenesis, stimulation of skeletal muscle fatty acid oxidation and muscle glucose uptake, and modulation of insulin secretion by pancreatic beta cells.

Investigators at the University of Southampton (United Kingdom) reported in the May 23, 2013, issue of the journal Cell that tumor cells exploit the AMPK-eEF2K pathway to adapt to nutrient deprivation. Adaptation of cancer cells to nutrient withdrawal was found to be severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme.

Contributing author Dr. Christopher G. Proud, professor of biological sciences at the University of Southampton said, "Cancer cells grow and divide much more rapidly than normal cells, meaning they have a much higher demand for and are often starved of, nutrients and oxygen. We have discovered that a cellular component, eEF2K, plays a critical role in allowing cancer cells to survive nutrient starvation, whilst normal, healthy cells do not usually require eEF2K in order to survive. Therefore, by blocking the function of eEF2K, we should be able to kill cancer cells, without harming normal, healthy cells in the process."

"Protein synthesis – the creation of proteins within cells –is a fundamental process that enables cells to grow, divide, and function," said Dr. Proud. "If it goes wrong, it can contribute to the development of cancer. We are interested in how defects in this process can cause cancers and other diseases."

Related Links:

University of Southampton



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.