Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

A Novel Cellular Thermal Shift Assay Monitors Intracellular Drug Binding

By BiotechDaily International staff writers
Posted on 17 Jul 2013
A team of Swedish biochemists and biophysicists has shown that an advanced thermal shift assay could be exploited by drug developers as a tool for the validation and optimization of correctly targeted drug binding.

The efficacy of drug treatment is dependent on the compound binding to the correct target molecule. However, optimization of target engagement by drugs within cells is a challenging task, since no methods currently exist for intracellular monitoring of drug binding.

In a potential breakthrough in this field, investigators at the Karolinska Institutet (Stockholm, Sweden) have developed a method for evaluating drug binding to target proteins in cells and tissue samples. Their cellular thermal shift assay (CETSA) was based on the biophysical principle of ligand-induced thermal stabilization of target proteins. In other words, drug binding renders the target protein more resistant to thermal denaturation.

This type of thermal shift assay is a way to monitor the thermal stability of proteins and investigate factors affecting this stability. The technique is used in high-throughput mode to screen optimal buffer conditions, ligands, cofactors, and drugs for their influence on proteins. Two methods to monitor protein denaturation are available: a differential scanning fluorimetry (DSF) method and a differential static light scattering method (DSLS). Changes in the thermal stability of protein-ligand or protein-peptide complexes relative to the stability of the protein alone allow the rapid identification of promising complexes for further structural characterization and to assign functions.

The investigators validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects, and drug resistance in cancer cell lines, as well as drug distribution in tissues and reported these findings in the July 5, 2013, issue of the journal Science.

"We have shown that the method works on a wide variety of target proteins and allows us to directly measure whether the drug molecules reach their targets in cells and animal models," said senior author Dr. Pär Nordlund, professor of medical biochemistry and biophysics at the Karolinska Institutet. "We believe that CETSA will eventually help to improve the efficiency of many drugs and contribute to better drug molecules and more successful treatments."

"We believe that the method can provide an important diagnostic tool in the treatment of cancer, for example, as CETSA can, in principle, enable us to determine which drug is most effective at targeting the proteins in the tumor," said first author Dr. Daniel Martinez Molina, senior lab manager at the Karolinska Institutet. "This also makes it possible for clinicians to ascertain at an early stage of treatment whether the tumor has developed a certain kind of resistance and which type of therapy could then be more suitable for the patient."

Related Links:
Karolinska Institute




Channels

Genomics/Proteomics

view channel
Image: Pluristem technicians produce PLacental eXpanded (PLX) cells in the company\'s state-of-the-art facility (Photo courtesy of Pluristem Therapeutics).

Placental Cells Secrete Factors That Protect Nerves from Ischemic Damage

Cells derived from placenta have been found to protect PC12 cells—rat-derived cells that behave similarly to and are used as stand-ins to study human nerve cells—in a culture-based ischemic stroke model.... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.