Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Gene Therapy Increases Survival in Huntington's Disease Animal Models

By BiotechDaily International staff writers
Posted on 27 Jun 2013
Gene therapy that suppressed formation of glial cells while promoting growth of neurons in the adult brain slowed development of neurodegenerative Huntington's disease in animal models.

Huntington’s disease (HD) is caused by a dominant gene that encodes the huntingtin protein. The 5' end of the HD gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between 7 and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of huntingtin is broken down into toxic peptides, which cause the loss of a type of brain cell called striatopallidal medium spiny projection neurons (MSNs). Destruction of these cells causes involuntary movements, problems with coordination, and, ultimately, in cognitive decline and depression. There is currently no treatment for this fatal disease.

Investigators at the University of Rochester Medical Center (NY, USA) and their colleagues at the University of Iowa (Iowa City, USA) initially worked with a Huntington's disease mouse model. They injected these animals with adeno-associated viruses (AAVs) modified to deliver the genes for the proteins BDNF (brain derived neurotrophic factor) or noggin. BDNF stimulates neural stem cells to produce neurons, while noggin inhibits the molecular pathway that induces formation of glial cells.

Results reported in the June 6, 2013, issue of the journal Cell Stem Cell revealed that a single injection of the adeno-associated viruses AAV4-BDNF and AAV4-noggin triggered the sustained recruitment of new MSNs in wild-type and R6/2 mice, a Huntington's disease model. Mice treated with AAV4-BDNF/noggin or with BDNF and noggin proteins actively recruited progenitor cells to form new MSNs that matured and achieved circuit integration. The AAV4-BDNF/noggin-treated R6/2 mice showed delayed deterioration of motor function and substantially increased survival.

In a follow-up set of experiments, squirrel monkeys that were given injections of adenoviral BDNF/noggin showed similar addition of striatal neurons.

"This study demonstrates the feasibility of a completely new concept to treat Huntington's disease, by recruiting the brain's endogenous neural stem cells to regenerate cells lost to the disease," said senior author Dr. Steve Goldman, professor of neurology at the University of Rochester Medical Center. "The sustained delivery of BDNF and noggin into the adult brain was clearly associated with both increased neurogenesis and delayed disease progression. We believe that our data suggest the feasibility of this process as a viable therapeutic strategy for Huntington's disease."

Related Links:
University of Rochester Medical Center
University of Iowa



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: (Left) Neurons in brains from people with autism do not undergo normal pruning during childhood and adolescence. The images show representative neurons from unaffected brains (left) and brains from autistic patients (right); the spines on the neurons indicate the location of synapses (Photo courtesy of Guomei Tang, PhD and Mark S. Sonders, PhD, Columbia University Medical Center).

Autistic Youngsters Found to Have Too Many Brain Synapses

Autistic children and adolescents have been shown to have an excess of brain synapses, and this is due to a slowdown in the normal brain “trimming” process during development, according to new findings.... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Assessing Myeloma Progression Using Calcium Isotope Analysis

Scientists are revealing how an Earth science research principle can be used in biomedical situations to predict the development of disease. The researchers evaluated a new approach to detecting bone loss in cancer patients by using calcium isotope analysis to predict whether myeloma patients are at risk for developing... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.