Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Drugs Inhibiting the KRAS Oncogene Suppress Growth of Pancreatic Tumors in Mouse Xenograft Model

By BiotechDaily International staff writers
Posted on 14 Jun 2013
Drugs that inhibit the activity of the enzyme GSK-3 alpha (glycogen synthase kinase 3 alpha) strongly suppress growth of human pancreatic tumor xenografts in mice as well as down regulate certain oncogenic NF-kappaB (nuclear factor kappa-light-chain-enhancer of activated B cells) target genes.

GSK-3 has since been identified as a kinase for over forty different proteins in a variety of different pathways. In mammals, GSK-3 is encoded by two known genes, GSK-3 alpha and GSK-3 beta. GSK-3 has recently been the subject of intense research because it has been implicated in a number of diseases, including type II diabetes, Alzheimer's disease, inflammation, cancer, and bipolar disorder.

Investigators at the University of North Carolina (Chapel Hill, USA) have found that in pancreatic cancer cells GSK-3 alpha is upregulated by mutant KRAS (Kirsten rat sarcoma viral oncogene). The KRAS gene performs an essential function in normal tissue signaling, and its mutation is an essential step in the development of many cancers. A single amino acid substitution is responsible for the activating mutation. The transforming protein that results is implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas, and colorectal carcinoma.

In a paper published in the April 1, 2013, online edition of the journal Cancer Discovery, the investigators reported that GSK-3 alpha was required for promoting critical NF-kappaB signaling in pancreatic cancer cells. The transcription factors of the NF-kappaB family are upregulated in many human cancers. NF-kappaB has roles in all stages of carcinogenesis or cancer progression, including protection from cell death, increase of cell proliferation, cell motility and metastasis, tumor inflammation, and angiogenesis. In addition, tumor cells often acquire resistance to anticancer drugs by upregulating NF-kappaB signaling.

Pharmacologic inhibition of GSK-3 suppressed growth of human pancreatic tumor explants in mice, consistent with the loss of expression of oncogenic genes such as c-myc and TERT.

“GSK-3 promotes activity of a protein called NF-kappaB. Our lab has been studying NF-kappaB for a number of years and has published that this protein is important in KRAS signaling. But how KRAS activates NF-kappaB has not been well understood. We have found a link, ” said senior author Dr. Albert Baldwin, professor of biology at the University of North Carolina. “Our data suggest that GSK-3 alpha is really an onco-protein and that KRAS utilizes GSK-3 alpha to activate both NF-kappaB pathways, called canonical and noncanonical. This finding is important because GSK-3 alpha sits on top of the two pathways and inhibits them both, thus making it a viable therapeutic target. We are conducting further pharmacologic studies.”

Related Links:


University of North Carolina



comments powered by Disqus

Channels

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.