Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Antiautoimmune Drug Treatment Combined with Bone Marrow Transplant Cures Mouse Model of Type I Diabetes

By BiotechDaily International staff writers
Posted on 12 Jun 2013
Treatment with a drug to block autoimmune attack combined with transplantation of adult bone marrow cells or purified bone marrow progenitor cells restored the population of insulin-producing pancreatic beta cells and cured a mouse model of type I diabetes.

Investigators at the University of Missouri (Columbia, USA) had previously shown that a peptide drug (Ig-GAD2 ) comprising a 14 amino acid sequence isolated from the enzyme glutamic acid decarboxylase, induced immune modulation in hyperglycemic mice that was able to control pancreatic inflammation, stimulate beta-cell regeneration, and prevent type I diabetes progression. However, this treatment was unable to reverse the course of the disease despite eradication of inflammatory immune cells from the pancreas.

In a paper published in the May 28, 2013, online edition of the journal Diabetes the investigators reported that the reason for this failure was linked to damage done by autoimmune attack to the capillaries that supply blood to the pancreas. To repair this damage they injected diabetic rats with either bone marrow cells or purified bone marrow progenitor cells in combination with Ig-GAD2.

The investigators reported that when the mice received bone marrow cells together with Ig-GAD2, in addition to immune modulation there was concomitant formation of new beta- and endothelial cells in the pancreas. The new beta cells were of host origin while the donor bone marrow cells gave rise to the endothelial cells. On the other hand, transfer of purified bone marrow endothelial progenitors instead of whole bone marrow cells sustained both beta- and endothelial cell formation and reversal of diabetes.

Related Links:
University of Missouri




Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.