Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Mechanism Identified That Allows Cancer Cells to Survive Metabolic Stress and Chemotherapy

By BiotechDaily International staff writers
Posted on 05 Jun 2013
Image: Senior author Dr. Beverly M. Emerson (back right) and first author Dr. Fernando Lopez-Diaz (Photo courtesy if the Salk Institute for Biological Studies).
Image: Senior author Dr. Beverly M. Emerson (back right) and first author Dr. Fernando Lopez-Diaz (Photo courtesy if the Salk Institute for Biological Studies).
Image: Shown in brown, the activation of TGF-beta signaling (left) and p53 levels (right) in a breast biopsy from a patient diagnosed with ductal carcinoma in situ and invasive carcinoma. TGF-beta-1 deactivates the main pathway directing the response to chemotherapeutic drugs and cellular stress, suggesting a potential new therapy to prevent early stages cancers progression and drug resistance (Photo courtesy of the Salk Institute for Biological Studies).
Image: Shown in brown, the activation of TGF-beta signaling (left) and p53 levels (right) in a breast biopsy from a patient diagnosed with ductal carcinoma in situ and invasive carcinoma. TGF-beta-1 deactivates the main pathway directing the response to chemotherapeutic drugs and cellular stress, suggesting a potential new therapy to prevent early stages cancers progression and drug resistance (Photo courtesy of the Salk Institute for Biological Studies).
The ability of cancer cells to withstand both the metabolic stress of uncontrolled growth and that caused by chemotherapy depends on the action of transforming growth factor-beta (TGF-beta), which prevents apoptosis by blocking p53 tumor suppressor signaling.

TGF-beta acts as an antiproliferative factor in normal epithelial cells and at early stages of cancer development. However, when a cell is transformed into a cancer cell, parts of the TGF-beta signaling pathway are mutated, and TGF-beta no longer controls the cell. These cancer cells and surrounding stromal cells (fibroblasts) begin to proliferate. Both types of cell increase their production of TGF-beta. This TGF-beta acts on the surrounding stromal cells, immune cells, endothelial, and smooth-muscle cells causing immunosuppression and angiogenesis, which makes the cancer more invasive.

Investigators at the Salk Institute of Biological Studies (La Jolla, CA, USA) examined premalignant as well as cancer cells from breast and lung tumors and matched normal breast cells from healthy women. They reported in the May 23, 2013, issue of the journal Molecular Cell that in about half of the breast tumors, including premalignant lesions, when TGF-beta signaling was highly activated, the levels of p53 were reduced, and vice versa—if the TGF-beta pathway was reduced, there were high levels of p53.

"Not all premalignant cells morph into cancer," said senior author Dr. Beverly M. Emerson, professor of regulatory biology at the Salk Institute of Biological Studies. "Many self-destruct due to cellular protective mechanisms. But some will become tumors and, at this point, there is no way to predict which of these cells are a risk."

"Our work suggests it might be possible to halt cancer development in premalignant cells—those that are just a few divisions away from being normal," said first author Dr. Fernando Lopez-Diaz, a researcher in the regulatory biology laboratory at the Salk Institute for Biological Studies.

"Agents designed to inhibit TGF-beta are already being tested against cancers that have already spread," said Dr. Emerson. "This study offers both significant insights into early cancer development and a new direction to explore in cancer treatment. It would be fantastic if a single agent could shut down both advanced cancer and cancer that is primed to develop."

Related Links:

Salk Institute of Biological Studies



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

21 Apr 2015 - 23 Apr 2015
21 Apr 2015 - 23 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.