Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Mechanism Identified That Allows Cancer Cells to Survive Metabolic Stress and Chemotherapy

By BiotechDaily International staff writers
Posted on 05 Jun 2013
Image: Senior author Dr. Beverly M. Emerson (back right) and first author Dr. Fernando Lopez-Diaz (Photo courtesy if the Salk Institute for Biological Studies).
Image: Senior author Dr. Beverly M. Emerson (back right) and first author Dr. Fernando Lopez-Diaz (Photo courtesy if the Salk Institute for Biological Studies).
Image: Shown in brown, the activation of TGF-beta signaling (left) and p53 levels (right) in a breast biopsy from a patient diagnosed with ductal carcinoma in situ and invasive carcinoma. TGF-beta-1 deactivates the main pathway directing the response to chemotherapeutic drugs and cellular stress, suggesting a potential new therapy to prevent early stages cancers progression and drug resistance (Photo courtesy of the Salk Institute for Biological Studies).
Image: Shown in brown, the activation of TGF-beta signaling (left) and p53 levels (right) in a breast biopsy from a patient diagnosed with ductal carcinoma in situ and invasive carcinoma. TGF-beta-1 deactivates the main pathway directing the response to chemotherapeutic drugs and cellular stress, suggesting a potential new therapy to prevent early stages cancers progression and drug resistance (Photo courtesy of the Salk Institute for Biological Studies).
The ability of cancer cells to withstand both the metabolic stress of uncontrolled growth and that caused by chemotherapy depends on the action of transforming growth factor-beta (TGF-beta), which prevents apoptosis by blocking p53 tumor suppressor signaling.

TGF-beta acts as an antiproliferative factor in normal epithelial cells and at early stages of cancer development. However, when a cell is transformed into a cancer cell, parts of the TGF-beta signaling pathway are mutated, and TGF-beta no longer controls the cell. These cancer cells and surrounding stromal cells (fibroblasts) begin to proliferate. Both types of cell increase their production of TGF-beta. This TGF-beta acts on the surrounding stromal cells, immune cells, endothelial, and smooth-muscle cells causing immunosuppression and angiogenesis, which makes the cancer more invasive.

Investigators at the Salk Institute of Biological Studies (La Jolla, CA, USA) examined premalignant as well as cancer cells from breast and lung tumors and matched normal breast cells from healthy women. They reported in the May 23, 2013, issue of the journal Molecular Cell that in about half of the breast tumors, including premalignant lesions, when TGF-beta signaling was highly activated, the levels of p53 were reduced, and vice versa—if the TGF-beta pathway was reduced, there were high levels of p53.

"Not all premalignant cells morph into cancer," said senior author Dr. Beverly M. Emerson, professor of regulatory biology at the Salk Institute of Biological Studies. "Many self-destruct due to cellular protective mechanisms. But some will become tumors and, at this point, there is no way to predict which of these cells are a risk."

"Our work suggests it might be possible to halt cancer development in premalignant cells—those that are just a few divisions away from being normal," said first author Dr. Fernando Lopez-Diaz, a researcher in the regulatory biology laboratory at the Salk Institute for Biological Studies.

"Agents designed to inhibit TGF-beta are already being tested against cancers that have already spread," said Dr. Emerson. "This study offers both significant insights into early cancer development and a new direction to explore in cancer treatment. It would be fantastic if a single agent could shut down both advanced cancer and cancer that is primed to develop."

Related Links:

Salk Institute of Biological Studies



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.