Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Biodegradable Nanoparticles Maintain Glucose Balance in Mouse Diabetes Model

By BiotechDaily International staff writers
Posted on 30 May 2013
Image: Senior author Dr. Daniel G. Anderson (Photo courtesy of Massachusetts Institute of Technology).
Image: Senior author Dr. Daniel G. Anderson (Photo courtesy of Massachusetts Institute of Technology).
Diabetes researchers have developed an acid-degradable polymeric "nanonetwork" made up of nanoparticles loaded with insulin that can detect elevated glucose levels in the blood of diabetics and then release the hormone to return glucose levels to normal.

Investigators at the Massachusetts Institute of Technology (Cambridge, USA) adapted nanotechnology techniques that they had developed for anticancer drug delivery to address the problem of maintaining the glucose balance in diabetes patients.

They prepared a gel-like structure containing a mixture of oppositely charged nanoparticles that by attracting each other could maintain the integrity of the gel and prevent individual nanoparticles from becoming detached. Each nanoparticle was a dextran sphere containing insulin and an enzyme capable of converting glucose to gluconic acid. The structure of the dextran sphere allowed glucose to diffuse freely, so when sugar levels in the blood were elevated, the enzyme produced large quantities of gluconic acid, lowering the pH of the local environment. The acidic environment caused the dextran spheres to disintegrate, releasing insulin into the bloodstream.

The nanoparticle gel was tested in a Type I diabetes mouse model. Results published in the May 2, 2013, online edition of the journal ACS Nano revealed that a single subcutaneous injection of the gel corrected glucose imbalance and maintained normal blood-sugar levels in the animals for an average of 10 days. As the particles were mostly composed of polysaccharides, they were biocompatible and eventually degraded in the body.

“Insulin really works, but the problem is people do not always get the right amount of it. With this system of extended release, the amount of drug secreted is proportional to the needs of the body,” said senior author Dr. Daniel Anderson, associate professor of chemical engineering at the Massachusetts Institute of Technology.

Related Links:

Massachusetts Institute of Technology



Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.