Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Whole Exome Sequencing of Small Intestine Neuroendocrine Tumors May Lead to Development of Personalized Treatment

By BiotechDaily International staff writers
Posted on 30 May 2013
Image: First author Dr. Michaela S. Banck (Photo courtesy of the Mayo Clinic).
Image: First author Dr. Michaela S. Banck (Photo courtesy of the Mayo Clinic).
Whole exome sequencing of small intestine neuroendocrine tumors, the most common malignancy of the small bowel, revealed genomic alterations that might be susceptible to chemotherapy in 72% of the patients studied.

The exome is the part of the genome formed by exons, nucleotide sequences encoded by a gene that remain present within the final mature RNA product of that gene after introns have been removed by RNA splicing. The term exon refers to both the DNA sequence within a gene and to the corresponding sequence in RNA transcripts. The exome of the human genome consists of roughly 180,000 exons constituting about 1% of the total genome, or about 30 megabases of DNA. Though comprising a very small fraction of the genome, mutations in the exome are thought to harbor 85% of disease-causing mutations.

Investigators at the Mayo Clinic (Rochester, MN, USA) analyzed the exomes of small intestine neuroendocrine tumors from 48 patients, along with normal tissue from those same 48 patients. They employed massively parallel, or “nextgen,” DNA sequencing, which facilitates the collection of comprehensive, genome-wide, unbiased datasets providing a common data framework for comparing results across different tumor types and gene sets. This technique provides the most comprehensive technology to date to explore the potential of genomics for individualizing cancer treatment within a tumor type.

Data obtained from analysis of the 96 whole exome sequences was published in the May 15, 2013, online edition of the Journal of Clinical Investigation. The findings revealed that small intestine neuroendocrine tumors samples carried low numbers of point mutations and characteristic recurrent patterns of gene duplications and losses. Candidate therapeutically relevant alterations were found in 35 of the 48 patients, including SRC, SMAD family genes, AURKA, EGFR, HSP90, and PDGFR. Mutually exclusive amplification of the serine-threonine protein kinases AKT1 or AKT2 was the most common event in 16 patients who displayed alterations of PI3K/AKT/mTOR signaling. AKT1 (v-akt murine thymoma viral oncogene homolog 1) is a component of the PI3K/AKT/mTOR pathway, and mutations in AKT1 have been implicated in breast, colorectal, and lung cancers,

“This is a very important step in achieving targeted therapies and individualized treatment approaches for patients with small bowel carcinoids,” said first author Dr. Michaela Banck, an oncologist at the Mayo Clinic. “Genomic analysis of the individual patient’s tumors will help us identify new drugs that are targeted to the individual’s disease.”

Related Links:
Mayo Clinic



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

21 Apr 2015 - 23 Apr 2015
21 Apr 2015 - 23 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.