Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

New Drug Combinations Block Kidney Cancer in Culture and Mouse Models

By BiotechDaily International staff writers
Posted on 20 May 2013
Image: Senior author Dr. John Copland (Photo courtesy of the Mayo Clinic).
Image: Senior author Dr. John Copland (Photo courtesy of the Mayo Clinic).
Drugs that block the activity of the enzyme Stearoyl-CoA desaturase-1 (SCD1) repress the growth of kidney cancer cells in culture and in mouse models of the disease.

SCD1, which is overexpressed in most kidney cancer samples, is a key enzyme in fatty acid metabolism responsible for forming a double bond in Stearoyl-CoA. This is the way that the monounsaturated fatty acid oleic acid is produced from the saturated fatty acid stearic acid. The ratio of stearic acid to oleic acid has been implicated in the regulation of cell growth and differentiation through effects on cell membrane fluidity and signal transduction.

Investigators at the Mayo Clinic (Jacksonville, FL, USA) worked with a drug that had been designed to block the activity of SCD1 in clear cell renal cell carcinoma (ccRCC), which accounts for almost 85% of kidney cancer cases in the United States.

The investigators examined patient normal and ccRCC tissue samples and cell lines for SCD1 expression. Genetic knockdown models and targeted inhibition of SCD1 through the use of the drug A939572 were analyzed for growth, apoptosis, and alterations in gene expression using gene array analysis. Models of combined therapy using A939572 and the tyrosine kinase inhibitors (TKI) sunitinib and pazopanib, and the mTOR inhibitor temsirolimus were evaluated.

Results published in the May 1, 2013, issue of the journal Clinical Cancer Research revealed increased SCD1 expression in all stages of ccRCC. Both genetic knockdown and pharmacologic inhibition of SCD1 decreased tumor cell proliferation and induced apoptosis in vitro and in vivo. Upon gene array, quantitative real-time PCR, and protein analysis of A939572-treated or genetic SCD1 knockdown samples, induction of endoplasmic reticulum stress response signaling was observed, which suggested a mechanistic mechanism for SCD1 activity in ccRCC. Furthermore, application of A939572 (25% inhibition when applied alone) combined with temsirolimus inhibited tumor growth by 60%–70% in vitro and in vivo.

“There is a clear need for new therapies for this common cancer. With very few exceptions, patients inevitably become resistant to all available treatments,” said senior author Dr. John Copland, professor of cancer biology at the Mayo Clinic.

“We found it [A939572] to be incredibly specific to cancer cells in laboratory mice treated with the agent,” said Dr. Copland. “But these are early days in the testing of this agent for cancer. The synergy between the drugs [A939572 and temsirolimus] was very striking, suggestive of significant clinical benefit in patients.”

Related Links:
Mayo Clinic



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Alternative splicing produces two protein isoforms (Photo courtesy of Wikimedia Commons).

Key Regulator of Cancer-Inducing Alternative Splicing Identified

Cancer researchers have identified the splicing factor RBM4 (RNA-binding protein 4) as a key determinant in processes that prevent tumor development and spread. RBM4 is known to be crucial to gene splicing... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.