Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

New Drug Combinations Block Kidney Cancer in Culture and Mouse Models

By BiotechDaily International staff writers
Posted on 20 May 2013
Image: Senior author Dr. John Copland (Photo courtesy of the Mayo Clinic).
Image: Senior author Dr. John Copland (Photo courtesy of the Mayo Clinic).
Drugs that block the activity of the enzyme Stearoyl-CoA desaturase-1 (SCD1) repress the growth of kidney cancer cells in culture and in mouse models of the disease.

SCD1, which is overexpressed in most kidney cancer samples, is a key enzyme in fatty acid metabolism responsible for forming a double bond in Stearoyl-CoA. This is the way that the monounsaturated fatty acid oleic acid is produced from the saturated fatty acid stearic acid. The ratio of stearic acid to oleic acid has been implicated in the regulation of cell growth and differentiation through effects on cell membrane fluidity and signal transduction.

Investigators at the Mayo Clinic (Jacksonville, FL, USA) worked with a drug that had been designed to block the activity of SCD1 in clear cell renal cell carcinoma (ccRCC), which accounts for almost 85% of kidney cancer cases in the United States.

The investigators examined patient normal and ccRCC tissue samples and cell lines for SCD1 expression. Genetic knockdown models and targeted inhibition of SCD1 through the use of the drug A939572 were analyzed for growth, apoptosis, and alterations in gene expression using gene array analysis. Models of combined therapy using A939572 and the tyrosine kinase inhibitors (TKI) sunitinib and pazopanib, and the mTOR inhibitor temsirolimus were evaluated.

Results published in the May 1, 2013, issue of the journal Clinical Cancer Research revealed increased SCD1 expression in all stages of ccRCC. Both genetic knockdown and pharmacologic inhibition of SCD1 decreased tumor cell proliferation and induced apoptosis in vitro and in vivo. Upon gene array, quantitative real-time PCR, and protein analysis of A939572-treated or genetic SCD1 knockdown samples, induction of endoplasmic reticulum stress response signaling was observed, which suggested a mechanistic mechanism for SCD1 activity in ccRCC. Furthermore, application of A939572 (25% inhibition when applied alone) combined with temsirolimus inhibited tumor growth by 60%–70% in vitro and in vivo.

“There is a clear need for new therapies for this common cancer. With very few exceptions, patients inevitably become resistant to all available treatments,” said senior author Dr. John Copland, professor of cancer biology at the Mayo Clinic.

“We found it [A939572] to be incredibly specific to cancer cells in laboratory mice treated with the agent,” said Dr. Copland. “But these are early days in the testing of this agent for cancer. The synergy between the drugs [A939572 and temsirolimus] was very striking, suggestive of significant clinical benefit in patients.”

Related Links:
Mayo Clinic



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

White-Matter Deficits Found in Codeine-Containing Cough Syrup Users

A magnetic resonance imaging (MRI) study of chronic users of codeine-containing cough syrups (CCS) has found deficits in specific regions of brain white matter and linked these changes with increased impulsivity in codeine-containing cough syrup users. These findings were consistent with findings from earlier research of... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.