Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Liposomes Expand Cancer Drug's Bioavailability and Potency in Mouse Model

By BiotechDaily International staff writers
Posted on 16 May 2013
Image: First author Dr. Carey Anders (Photo courtesy of the University of North Carolina, Lineberger Comprehensive Cancer Center).
Image: First author Dr. Carey Anders (Photo courtesy of the University of North Carolina, Lineberger Comprehensive Cancer Center).
Encapsulation of the anticancer drug doxorubicin (doxo) within PEGylated liposomes increased the compound's intracranial tumor bioavailability, extended its lifetime in circulation, and improved the survival rate of mice bearing intercranial triple negative breast tumors.

Investigators at the University of North Carolina (Chapel Hill, USA) sought to decrease the toxicity of doxo and increase the length of time it could circulate in the blood by enclosing the drug within PEGylated liposomes.

The investigators inoculated athymic mice intracerebrally with triple negative breast cancer cells that expressed the enzyme luciferase. They then treated some of the animals with doxo ecapslulated in PEGylated liposomes (PLD) or with free doxo (NonL-doxo). Efficacy of the treatment was assessed by survival of the animals and detection of bioluminescence.

Results published in the May 1, 2013, issue of the journal PLOS ONE revealed that treatment with PLD resulted in a 1,500-fold higher plasma and 20-fold higher intracranial tumor bioavailability compared with NonL-doxo. In addition, PLD was detected in plasma and intracranial tumors 96 hours following treatment compared to the drug being undetectable in plasma and tumors after 24 hours in the NonL-doxo animals. Survival rates for the PLD treated mice were significantly prolonged as compared NonL-doxo.

Related Links:

University of North Carolina


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: To adhere to catheters and start urinary tract infections, bacteria extend microscopic fibers with sticky proteins at their ends. Researchers have developed a vaccine that blocks the EbpA protein, visible as a white bulge above, and stops infections in mice (Photo courtesy of Dr. John Heuser, Washington University School of Medicine).

Blocking Binding of Bacteria to Fibrinogen Prevents Biofilm Formation and Catheter-Associated Bladder Infection in Mice

A team of molecular microbiologists has identified and targeted a critical step in biofilm formation and developed a vaccine that prevents catheter-associated urinary tract infections in mice.... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.