Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Liposomes Expand Cancer Drug's Bioavailability and Potency in Mouse Model

By BiotechDaily International staff writers
Posted on 16 May 2013
Image: First author Dr. Carey Anders (Photo courtesy of the University of North Carolina, Lineberger Comprehensive Cancer Center).
Image: First author Dr. Carey Anders (Photo courtesy of the University of North Carolina, Lineberger Comprehensive Cancer Center).
Encapsulation of the anticancer drug doxorubicin (doxo) within PEGylated liposomes increased the compound's intracranial tumor bioavailability, extended its lifetime in circulation, and improved the survival rate of mice bearing intercranial triple negative breast tumors.

Investigators at the University of North Carolina (Chapel Hill, USA) sought to decrease the toxicity of doxo and increase the length of time it could circulate in the blood by enclosing the drug within PEGylated liposomes.

The investigators inoculated athymic mice intracerebrally with triple negative breast cancer cells that expressed the enzyme luciferase. They then treated some of the animals with doxo ecapslulated in PEGylated liposomes (PLD) or with free doxo (NonL-doxo). Efficacy of the treatment was assessed by survival of the animals and detection of bioluminescence.

Results published in the May 1, 2013, issue of the journal PLOS ONE revealed that treatment with PLD resulted in a 1,500-fold higher plasma and 20-fold higher intracranial tumor bioavailability compared with NonL-doxo. In addition, PLD was detected in plasma and intracranial tumors 96 hours following treatment compared to the drug being undetectable in plasma and tumors after 24 hours in the NonL-doxo animals. Survival rates for the PLD treated mice were significantly prolonged as compared NonL-doxo.

Related Links:

University of North Carolina


Channels

Genomics/Proteomics

view channel
Image: Pluristem technicians produce PLacental eXpanded (PLX) cells in the company\'s state-of-the-art facility (Photo courtesy of Pluristem Therapeutics).

Placental Cells Secrete Factors That Protect Nerves from Ischemic Damage

Cells derived from placenta have been found to protect PC12 cells—rat-derived cells that behave similarly to and are used as stand-ins to study human nerve cells—in a culture-based ischemic stroke model.... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.