Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Blocking Alzheimer’s Disease Process by Blocking Specific Protein

By BiotechDaily International staff writers
Posted on 15 May 2013
Scientists have discovered a potential approach for developing treatments to stop the disease process in Alzheimer’s disease (AD). The strategy is based on unclogging and removing the toxic debris that gathers in patients’ brains, by suppressing activity of a little-known regulator protein called CD33.

“Too much CD33 appears to promote late-onset Alzheimer’s by preventing support cells from clearing out toxic plaques, key risk factors for the disease,” explained Rudolph Tanzi, PhD, of Massachusetts General Hospital (Boston, MA, USA) and Harvard University (Cambridge, MA, USA), a grantee of the US National Institutes of Health’s (NIH; Bethesda, MD, USA) National Institute of Mental Health (NIMH) and National Institute on Aging (NIA).“Future medications that impede CD33 activity in the brain might help prevent or treat the disorder.”

Dr. Tanzi and colleagues reported their findings April 25, 2013, in the journal Neuron. Variation in the CD33 gene appeared as one of four prime suspects in the largest genome-wide dragnet of Alzheimer's-affected families, reported by Dr. Tanzi and colleagues in 2008.

The scientists found over-expression of CD33 in support cells, called microglia, in postmortem brains from patients who had late-onset AD, the most typical form of the disorder. The more CD33 protein on the cell surface of microglia, the more beta-amyloid proteins and plaques had accumulated in their brains. Moreover, the researchers discovered that brains of people who inherited a version of the CD33 gene that protected them from AD noticeably exhibited reduced amounts of CD33 on the surface of microglia and less beta-amyloid.




comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Illustration comparing a normal blood vessel and partially blocked vessel due to atherosclerotic plaque build-up (Photo courtesy of Wikimedia Commons).

Mutation Reducing Fatty Acid-Binding Protein Activity Lowers Heart Attack Risk

A team of Finnish cardiovascular disease researchers found that a mutation generating a low-expression variant of fatty acid-binding protein 4 (FABP4), reduced the risk of heart attack and stroke.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Design of the minimal viral coat protein C-Sn-B (Photo courtesy of Wageningen University).

Synthetic Virus Designed to Enhance Delivery of New Generation of Pharmaceutical Agents

Dutch scientists have effectively developed an artificial virus that may be used for the delivery of a new generation of pharmaceutical agents, consisting of large biomolecules, by packaging them in a... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.