Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

A Molecular Hinge Allows Transport Proteins to Move Neurotransmitters Across Brain Cell Membranes

By BiotechDaily International staff writers
Posted on 13 May 2013
Image: Senior author Dr. Shimon Schuldiner (Photo courtesy of the Hebrew University of Jerusalem).
Image: Senior author Dr. Shimon Schuldiner (Photo courtesy of the Hebrew University of Jerusalem).
An international team of molecular biologists has developed a model that shows how components of a protein transport complex act as a molecular hinge to move neurotransmitters across brain cell membranes.

Investigators at the Hebrew University of Jerusalem (Israel) and the Max Planck Institute of Biophysics (Frankfurt am Main, Germany) focused on vesicular monoamine transporter 2 (VMAT2), a member of the largest superfamily of transporters, which is known to convey a variety of neurotransmitters such as adrenaline, dopamine, and serotonin as well as MPP, a neurotoxin linked to Parkinson’s disease.

In the April 9, 2013, issue of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) they described the importance of two anchor points positioned between two six-transmembrane-helix bundles. These two domains provide hinge points about which the two halves of the protein flex and straighten to open and close the translocation pathway, a process that enables alternating exposure of the substrate-binding site. Polar residues that create a hydrogen bond cluster form one of the anchor points of VMAT2, while the other results from hydrophobic interactions.

The investigators, led by Dr. Shimon Schuldiner, professor of biochemistry at the Hebrew University of Jerusalem, said that, "They hope that this knowledge may, in the future, help in designing drugs for treating pathologies involving transporters similar to VMAT, including infectious and neurological diseases."

Related Links:
Hebrew University of Jerusalem
Max Planck Institute of Biophysics



Channels

Drug Discovery

view channel

Retinoic Acid Prevents Precancerous Breast Cells from Progressing to Full-Blown Cancer

Retinoic acid, a derivative of vitamin A, was found to prevent pre-cancerous breast cells from progressing to full-blown cancer but did not have any effect on breast tumor cells. Investigators at Thomas Jefferson University (Philadelphia, PA, USA) worked with a novel breast cancer model that had been developed by treating... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.