Features Partner Sites Information LinkXpress
Sign In
Demo Company

A Molecular Hinge Allows Transport Proteins to Move Neurotransmitters Across Brain Cell Membranes

By BiotechDaily International staff writers
Posted on 13 May 2013
Print article
Image: Senior author Dr. Shimon Schuldiner (Photo courtesy of the Hebrew University of Jerusalem).
Image: Senior author Dr. Shimon Schuldiner (Photo courtesy of the Hebrew University of Jerusalem).
An international team of molecular biologists has developed a model that shows how components of a protein transport complex act as a molecular hinge to move neurotransmitters across brain cell membranes.

Investigators at the Hebrew University of Jerusalem (Israel) and the Max Planck Institute of Biophysics (Frankfurt am Main, Germany) focused on vesicular monoamine transporter 2 (VMAT2), a member of the largest superfamily of transporters, which is known to convey a variety of neurotransmitters such as adrenaline, dopamine, and serotonin as well as MPP, a neurotoxin linked to Parkinson’s disease.

In the April 9, 2013, issue of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) they described the importance of two anchor points positioned between two six-transmembrane-helix bundles. These two domains provide hinge points about which the two halves of the protein flex and straighten to open and close the translocation pathway, a process that enables alternating exposure of the substrate-binding site. Polar residues that create a hydrogen bond cluster form one of the anchor points of VMAT2, while the other results from hydrophobic interactions.

The investigators, led by Dr. Shimon Schuldiner, professor of biochemistry at the Hebrew University of Jerusalem, said that, "They hope that this knowledge may, in the future, help in designing drugs for treating pathologies involving transporters similar to VMAT, including infectious and neurological diseases."

Related Links:
Hebrew University of Jerusalem
Max Planck Institute of Biophysics

Print article



view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.