Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Blocking Alzheimer’s Disease Process by Blocking Specific Protein

By BiotechDaily International staff writers
Posted on 13 May 2013
Scientists have discovered a potential approach for developing treatments to stop the disease process in Alzheimer’s disease (AD). The strategy is based on unclogging and removing the toxic debris that gathers in patients’ brains, by suppressing activity of a little-known regulator protein called CD33.

“Too much CD33 appears to promote late-onset Alzheimer’s by preventing support cells from clearing out toxic plaques, key risk factors for the disease,” explained Rudolph Tanzi, PhD, of Massachusetts General Hospital (Boston, MA, USA) and Harvard University (Cambridge, MA, USA), a grantee of the US National Institutes of Health’s (NIH; Bethesda, MD, USA) National Institute of Mental Health (NIMH) and National Institute on Aging (NIA).“Future medications that impede CD33 activity in the brain might help prevent or treat the disorder.”

Dr. Tanzi and colleagues reported their findings April 25, 2013, in the journal Neuron. Variation in the CD33 gene appeared as one of four prime suspects in the largest genome-wide dragnet of Alzheimer's-affected families, reported by Dr. Tanzi and colleagues in 2008. The gene was known to make a protein that controls the immune system, but its function in the brain remained elusive. To find out how it might contribute to AD, the researchers conducted human genetics, biochemistry, and human brain tissue, mouse, and cell-based research.

The scientists found over-expression of CD33 in support cells, called microglia, in postmortem brains from patients who had late-onset AD, the most typical form of the disorder. The more CD33 protein on the cell surface of microglia, the more beta-amyloid proteins and plaques had accumulated in their brains. Moreover, the researchers discovered that brains of people who inherited a version of the CD33 gene that protected them from AD noticeably exhibited reduced amounts of CD33 on the surface of microglia and less beta-amyloid.

Brain levels of beta-amyloid and plaques were also significantly decreased in mice modified to under-express or lack CD33. Microglia cells in these animals were more effective at clearing out the debris, which the researchers tracked to levels of CD33 on the cell surface.

New findings also suggested that CD33 works in league with another AD risk gene in microglia to regulate inflammation in the brain. The study’s findings, as well as those of a recent lab rodent study that replicated numerous characteristics of the human disorder, add support to the prevailing theory that accumulation of beta-amyloid plaques are hallmarks of Alzheimer’s pathology. They come at a time of upheaval in the field, triggered by other recent contradictory findings suggesting that these reputed offenders might instead play a protective role.

Because increased CD33 activity in microglia impaired beta-amyloid clearance in late onset AD, Dr. Tanzi and colleagues are now searching for agents that can cross the blood-brain barrier and block it.

Related Links:

Massachusetts General Hospital
National Institute of Mental Health



BIOSIGMA S.R.L.
RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A 3-dimensional picture reveals how the antibodies in the experimental drug Zmapp bind to Ebola virus (Photo courtesy of the Scripps Research Institute).

Electron Microscope Imaging Shows How Experimental Anti-Ebola Drug Works

Electron microscope imaging has revealed how the experimental drug ZMapp binds to the Ebolavirus and provides insights into how the drug prevents growth of the pathogen. ZMapp, which was developed by... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.