Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Activated Brown Fat Controls Obesity and Metabolic Disorders

By BiotechDaily International staff writers
Posted on 08 May 2013
Image: First author Dr. Aaron Cypess is an assistant professor of medicine at Harvard Medical School (Photo courtesy of Joslin Diabetes Center, Beth Deaconess Medical Center, Harvard University Medical School).
Image: First author Dr. Aaron Cypess is an assistant professor of medicine at Harvard Medical School (Photo courtesy of Joslin Diabetes Center, Beth Deaconess Medical Center, Harvard University Medical School).
Researchers speculate that the development of new drugs to activate human brown adipose tissue (BAT) could lead to safe treatments for obesity and metabolic disorders.

White adipose tissue (WAT) stores excess calories, while BAT consumes molecular fuel for thermogenesis (heat generation) using the tissue-specific enzyme UCP1(uncoupling protein 1).

Investigators at Harvard Medical School (Boston, MA, USA) delved into the genetic expression and protein activities found in BAT to determine its possible future role in the treatment of obesity. To this end, they isolated neck fat from adult human volunteers and compared its gene expression, differentiation capacity, basal oxygen consumption, and oxygen consumption rate (OCR), to different mouse adipose depots.

Among findings reported in the April 21, 2013, online edition of the journal Nature Medicine was that the OCR of the human BAT cells from the deep location in the neck next to the longus colli was nearly 50% of the rate found for mouse BAT cells. In contrast, the OCR of human WAT was only one-hundredth of the OCR found in the most active human BAT from the longus colli depot.

The investigators established a protocol for growth in culture of new functional BAT cells (adipocytes) by differentiating precursor cells (preadipocytes) derived from both superficial and deep human neck fat tissue. When stimulated, these cells expressed the same genes as naturally occurring brown fat cells. The use of brown fat cells produced in vitro will encourage development of drugs and other treatments that increase BAT activity for the correction of obesity and other metabolic disorders.

“BAT is most abundant in the deep locations of the neck, close to the sympathetic chain and the carotid arteries, where it likely helps to warm blood and raise body temperature,” said first author Dr. Aaron M. Cypess, assistant professor of medicine at Harvard Medical School. “Now that we know where brown fat is, we can easily collect more cells for further study.”

“Our research has significant practical applications. If we stimulate the growth of brown fat in people, it may burn their white fat and help them lose weight, which lessens insulin resistance and improves diabetes,” said Dr. Cypess.

Related Links:

Harvard Medical School



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Genome-Wide Mutation-Searching Computational Software Designed for Genomic Medicine

Analysis software cross-references a patient’s symptoms with his genome sequence to help physicians in the diagnosis of disease. This software was created by a team of scientists from A*STAR’s Genome Institute of Singapore (GIS), led by Dr. Pauline Ng. The research findings were published August 3, 2014, in the journal... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.