Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
BioConferenceLive
JIB

Activated Brown Fat Controls Obesity and Metabolic Disorders

By BiotechDaily International staff writers
Posted on 08 May 2013
Image: First author Dr. Aaron Cypess is an assistant professor of medicine at Harvard Medical School (Photo courtesy of Joslin Diabetes Center, Beth Deaconess Medical Center, Harvard University Medical School).
Image: First author Dr. Aaron Cypess is an assistant professor of medicine at Harvard Medical School (Photo courtesy of Joslin Diabetes Center, Beth Deaconess Medical Center, Harvard University Medical School).
Researchers speculate that the development of new drugs to activate human brown adipose tissue (BAT) could lead to safe treatments for obesity and metabolic disorders.

White adipose tissue (WAT) stores excess calories, while BAT consumes molecular fuel for thermogenesis (heat generation) using the tissue-specific enzyme UCP1(uncoupling protein 1).

Investigators at Harvard Medical School (Boston, MA, USA) delved into the genetic expression and protein activities found in BAT to determine its possible future role in the treatment of obesity. To this end, they isolated neck fat from adult human volunteers and compared its gene expression, differentiation capacity, basal oxygen consumption, and oxygen consumption rate (OCR), to different mouse adipose depots.

Among findings reported in the April 21, 2013, online edition of the journal Nature Medicine was that the OCR of the human BAT cells from the deep location in the neck next to the longus colli was nearly 50% of the rate found for mouse BAT cells. In contrast, the OCR of human WAT was only one-hundredth of the OCR found in the most active human BAT from the longus colli depot.

The investigators established a protocol for growth in culture of new functional BAT cells (adipocytes) by differentiating precursor cells (preadipocytes) derived from both superficial and deep human neck fat tissue. When stimulated, these cells expressed the same genes as naturally occurring brown fat cells. The use of brown fat cells produced in vitro will encourage development of drugs and other treatments that increase BAT activity for the correction of obesity and other metabolic disorders.

“BAT is most abundant in the deep locations of the neck, close to the sympathetic chain and the carotid arteries, where it likely helps to warm blood and raise body temperature,” said first author Dr. Aaron M. Cypess, assistant professor of medicine at Harvard Medical School. “Now that we know where brown fat is, we can easily collect more cells for further study.”

“Our research has significant practical applications. If we stimulate the growth of brown fat in people, it may burn their white fat and help them lose weight, which lessens insulin resistance and improves diabetes,” said Dr. Cypess.

Related Links:

Harvard Medical School



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: Neurons (greenish yellow) attach to silk-based scaffold (blue) creating functional networks throughout the scaffold pores (dark areas) (Photo courtesy of Tufts University).

Functional 3D Brain-Like Tissue Model Bioengineered

Researchers recently reported on the development of the first complex, three-dimensional (3D) model comprised of brain-like cortical tissue that displays biochemical and electrophysiologic responses, and... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.