Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Activated Brown Fat Controls Obesity and Metabolic Disorders

By BiotechDaily International staff writers
Posted on 08 May 2013
Image: First author Dr. Aaron Cypess is an assistant professor of medicine at Harvard Medical School (Photo courtesy of Joslin Diabetes Center, Beth Deaconess Medical Center, Harvard University Medical School).
Image: First author Dr. Aaron Cypess is an assistant professor of medicine at Harvard Medical School (Photo courtesy of Joslin Diabetes Center, Beth Deaconess Medical Center, Harvard University Medical School).
Researchers speculate that the development of new drugs to activate human brown adipose tissue (BAT) could lead to safe treatments for obesity and metabolic disorders.

White adipose tissue (WAT) stores excess calories, while BAT consumes molecular fuel for thermogenesis (heat generation) using the tissue-specific enzyme UCP1(uncoupling protein 1).

Investigators at Harvard Medical School (Boston, MA, USA) delved into the genetic expression and protein activities found in BAT to determine its possible future role in the treatment of obesity. To this end, they isolated neck fat from adult human volunteers and compared its gene expression, differentiation capacity, basal oxygen consumption, and oxygen consumption rate (OCR), to different mouse adipose depots.

Among findings reported in the April 21, 2013, online edition of the journal Nature Medicine was that the OCR of the human BAT cells from the deep location in the neck next to the longus colli was nearly 50% of the rate found for mouse BAT cells. In contrast, the OCR of human WAT was only one-hundredth of the OCR found in the most active human BAT from the longus colli depot.

The investigators established a protocol for growth in culture of new functional BAT cells (adipocytes) by differentiating precursor cells (preadipocytes) derived from both superficial and deep human neck fat tissue. When stimulated, these cells expressed the same genes as naturally occurring brown fat cells. The use of brown fat cells produced in vitro will encourage development of drugs and other treatments that increase BAT activity for the correction of obesity and other metabolic disorders.

“BAT is most abundant in the deep locations of the neck, close to the sympathetic chain and the carotid arteries, where it likely helps to warm blood and raise body temperature,” said first author Dr. Aaron M. Cypess, assistant professor of medicine at Harvard Medical School. “Now that we know where brown fat is, we can easily collect more cells for further study.”

“Our research has significant practical applications. If we stimulate the growth of brown fat in people, it may burn their white fat and help them lose weight, which lessens insulin resistance and improves diabetes,” said Dr. Cypess.

Related Links:

Harvard Medical School



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.