Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Radioactive Bacteria Designed to Treat Metastatic Pancreatic Cancer

By BiotechDaily International staff writers
Posted on 08 May 2013
Scientists have developed a pancreatic cancer therapy that uses Listeria bacteria to selectively infect tumor cells and deliver radioisotopes into them. The investigational treatment was shown to drastically decrease the number of metastases in a mouse model of highly aggressive pancreatic cancer without injuring normal tissue.

The study’s findings were published April 22, 2013, in the online edition of the Proceedings of the National Academy of Sciences of the United States of America (PNAS). “We’re encouraged that we’ve been able to achieve a 90% reduction in metastases in our first round of experiments,” said cosenior author Claudia Gravekamp, PhD, associate professor of microbiology and immunology at Albert Einstein College of Medicine of Yeshiva University (Bronx, NY, USA), who studies new approaches to treating metastatic cancer. “With further improvements, our approach has the potential to start a new era in the treatment of metastatic pancreatic cancer.”

Scientists, a while ago, observed that an attenuated form of Listeria monocytogenes could infect cancer cells, but not normal cells. In a 2009 study, Dr. Gravekamp discovered why—the tumor microenvironment inhibits the body’s immune response, allowing Listeria to survive inside the tumors. By contrast, the weakened bacteria are rapidly eliminated in normal tissues.

Scientists later demonstrated that Listeria could be exploited to convey an anticancer drug to tumor cells in laboratory cultures, but this strategy was never assessed in an animal model. These findings encouraged Dr. Gravekamp to examine Listeria-tumor interactions and how Listeria could be used to attack cancer cells.

The concept of attaching radioisotopes (typically utilized in cancer therapy) to Listeria was suggested by Ekaterina Dadachova, PhD, professor of radiology and of microbiology and immunology at Einstein and the study’s cosenior author. Dr. Dadachova, is a pioneer in developing radioimmunotherapies, i.e., patented treatments in which radioisotopes are attached to antibodies to selectively target cells including cancer cells, microbes or cells infected with HIV. When the antibodies bind to antigens that are unique to the cells being targeted, the radioisotopes emit radiation that selectively kills the cells.

Working together, Drs. Gravekamp and Dadachova coupled the radioactive isotope rhenium to the weakened Listeria bacteria. “We chose rhenium because it emits beta particles, which are very effective in treating cancer,” said Dr. Dadachova. “Also, rhenium has a half-life of 17 hours, so it is cleared from the body relatively quickly, minimizing damage to healthy tissue.”

Mice with metastatic pancreatic cancer were given intra-abdominal injections of the radioactive Listeria once a day for seven days, followed by a seven-day “rest” period and four additional daily injections of the radioactive bacteria. After 21 days, the scientists counted the number of metastases in the mice. The treatment had decreases the metastases by 90% compared with untreated controls. Furthermore, the radioactive Listeria had concentrated in metastases and to a lesser extent in primary tumors but not in healthy tissues, and the treated mice did not appear to suffer any ill effects.

The treatment may have the possibilities for treating an even higher percentage of metastases. “We stopped the experiment at 21 days because that’s when the control mice start dying,” said Dr. Dadachova. “Our next step is to assess whether the treatment affects the animals' survival.”

“At this point, we can say that we have a therapy that is very effective for reducing metastasis in mice,” Dr. Gravekamp noted. “Our goal is to clear 100% of the metastases, because every cancer cell that stays behind can potentially form new tumors.”

The researchers expect the treatment could be enhanced by using higher doses of radiation, modifying the treatment schedule, or by adding more anticancer agents onto the bacteria. Einstein has filed a patent application related to this research that is currently available for licensing to partners interested in further developing and commercializing this technology.

Related Links:
Albert Einstein College of Medicine of Yeshiva University


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.