Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Hypoxia-inducible Transcription Factors Trigger Metastasis in Malignant Melanoma Tumors

By BiotechDaily International staff writers
Posted on 06 May 2013
Cancer researchers have linked the hypoxia-inducible transcription factors HIF1 and HIF2 to the processes that control metastasis in melanoma tumors.

Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment, specifically, to decreases in oxygen, or hypoxia. HIFs promote the activation of genes involved in cancer initiation, progression, and metastases. Hypoxia has been shown to enhance the invasiveness and metastatic potential of tumor cells by regulating the genes involved in the breakdown of the ECM (extracellular matrix) as well as genes that control motility and adhesion of tumor cells. HIF activity is upregulated by mutated RAS, a member of the KRAS family of oncogenes, and BRAF (v-raf murine sarcoma viral oncogene homolog B1) as well as loss-of-function mutations of the PTEN gene. PTEN (phosphatase and tensin homolog), which is missing in 60% to 70% of metastatic cancers in humans, is the name of a phospholipid phosphatase protein, and gene that encodes it. The PTEN gene acts as a tumor suppressor gene thanks to the role of its protein product in regulation of the cycle of cell division, preventing cells from growing and dividing too rapidly.

Investigators at the University of North Carolina (Chapel Hill, USA) examined the molecular basis for melanoma metastasis in a genetically engineered PTEN-deficient, BRAF-mutant mouse model. In this model the activities of HIF1 and HIF2, which are usually overexpressed in melanoma tumors, can be shut down.

Results published in the April 8, 2013, online edition of the Journal of Clinical Investigation revealed that inactivation of HIF1 or HIF2 prevented metastasis without affecting primary tumor formation. Both HIF1 and HIF2 independently activated the proto-oncogene tyrosine-protein kinase SRC (v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)) using different signaling pathways.

The protein encoded by the SRC gene has been linked to several different cancers, and the identification of its role in melanoma may mean that existing drugs that target SRC may be adapted for treatment of malignant melanoma.

“What we are trying to do now is inhibit these pathways with drugs in the mice to see if we see a decrease of metastasis,” said first author Sara Hanna, a graduate student researcher at the University of North Carolina.

Related Links:

University of North Carolina




RANDOX LABORATORIES
BIOSIGMA S.R.L.
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.