Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Blocking the ATP11B Gene Restores Ovarian Cancer Cell Sensitivity to Cisplatin

By BiotechDaily International staff writers
Posted on 02 May 2013
The expression of a protein in the cellular membrane of ovarian cancer cells was found to mediate the development of resistance to platinum-containing chemotherapeutic compounds while blocking this expression restored sensitivity to the drugs.

Platinum compounds, such as cisplatin and carboplatin, are first line therapeutics in the treatment of many solid tumors, as they induce DNA cross-linking that prevents DNA synthesis and repair in rapidly dividing cells. However, the cells frequently develop resistance mechanisms in the form of reduced platinum uptake or increased platinum export that limit the extent of DNA damage.

Using genomic analyses investigators at the University of Texas MD Anderson Cancer Center (Houston, USA) found that ATP11B gene expression was substantially increased in cisplatin-resistant cells. ATP11B is a P-type ATPase, which is phosphorylated in the intermediate state and drives uphill transport of ions across membranes.

The investigators reported in the April 15, 2013, online edition of the Journal of Clinical Investigation that ATP11B expression was correlated with higher tumor grade in human ovarian cancer samples and with cisplatin resistance in human ovarian cancer cell lines. ATP11B gene silencing restored the sensitivity of ovarian cancer cell lines to cisplatin in vitro. Combined therapy of cisplatin and ATP11B-targeted siRNA (short interfering RNA) significantly decreased cancer growth in mice bearing ovarian tumors derived from cisplatin-sensitive and -resistant cells.

In vitro mechanistic studies on cellular platinum content and cisplatin efflux kinetics indicated that ATP11B enhanced the export of cisplatin from cells.

The investigators concluded that, "These findings identify ATP11B as a potential target for overcoming cisplatin resistance."

Related Links:
University of Texas MD Anderson Cancer Center


RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.