Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Stabilized Nanosponge Particles Sequester and Neutralize Toxins in the Bloodstream

By BiotechDaily International staff writers
Posted on 23 Apr 2013
Image: Nanosponge Cross Section. Engineers at the University of California, San Diego have invented a "nanosponge" capable of safely removing a broad class of dangerous toxins from the bloodstream, including toxins produced by MRSA (methicillin-resistant Staphylococcus aureus), E Coli, poisonous snakes, and bees. The nanosponges are made of a biocompatible polymer core wrapped in a natural red blood cell membrane (Photo courtesy of Zhang Research Lab, UC San Diego Jacobs School of Engineering).
Image: Nanosponge Cross Section. Engineers at the University of California, San Diego have invented a "nanosponge" capable of safely removing a broad class of dangerous toxins from the bloodstream, including toxins produced by MRSA (methicillin-resistant Staphylococcus aureus), E Coli, poisonous snakes, and bees. The nanosponges are made of a biocompatible polymer core wrapped in a natural red blood cell membrane (Photo courtesy of Zhang Research Lab, UC San Diego Jacobs School of Engineering).
Image: Nanosponge TEM (Transmission electron microscopy) image demonstrated that the nanosponges are approximately 85 nanometers in diameter (Photo courtesy of Zhang Research Lab, UC San Diego Jacobs School of Engineering).
Image: Nanosponge TEM (Transmission electron microscopy) image demonstrated that the nanosponges are approximately 85 nanometers in diameter (Photo courtesy of Zhang Research Lab, UC San Diego Jacobs School of Engineering).
Novel "nanosponges" comprising a biocompatible nanoparticle core coated with fragments of natural red blood cell membranes are able to absorb and neutralize a wide range of pore-forming toxins.

Investigators at the University of California, San Diego (UCSD; USA) had previously used the 85-nanometer diameter nanosponges to deliver chemotherapeutic drugs directly to tumors. The red blood cell membrane coating rendered the nanoparticles invisible to immune system response.

In the current study nanosponges were used to sequester and neutralize toxins circulating in the bloodstream of a mouse model. Results published in the April 14, 2013, online edition of the journal Nature Nanotechnology revealed that preinoculation with nanosponges enabled survival of 89% of mice challenged with a lethal dose of MRSA alpha-hemolysin toxin. Treatment with nanosponges after administration of the lethal dose of toxin resulted in 44% survival. Administering nanosponges and alpha-hemolysin toxin simultaneously at a toxin-to-nanosponge ratio of 70:1 neutralized the toxin and caused no discernible harm to the animals.

In these experiments, the nanosponges were found to have a half-life of 40 hours in the blood circulation of the mice. Eventually the animals' livers metabolized both the nanosponges and the sequestered toxins, with the liver suffering no apparent damage.

"This is a new way to remove toxins from the bloodstream," said senior author Dr. Liangfang Zhang, professor of nanoengineering at UCSD. "Instead of creating specific treatments for individual toxins, we are developing a platform that can neutralize toxins caused by a wide range of pathogens, including MRSA and other antibiotic resistant bacteria."

Related Links:
University of California, San Diego



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.