Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Targeted Nanoparticles Cure Chronic Inflammatory Diseases in Mouse Models

By BiotechDaily International staff writers
Posted on 11 Apr 2013
Nanoparticles containing an anti-inflammatory peptide derived from the protein annexin I and targeted for binding to collagen IV were shown to resolve chronic inflammatory conditions in mouse models.

Investigators at Columbia University (New York, NY, USA) prepared nanoparticles from biodegradable diblock poly(lactic-co-glycolic acid)-b-polyethyleneglycol and poly(lactic-co-glycolic acid)-b-polyethyleneglycol. These particles were loaded with a 24-amino-acid peptide, Ac2-26, which was derived from annexin A1. Annexin A1 belongs to the annexin family of Ca2+-dependent phospholipid-binding proteins that are preferentially located on the cytosolic face of the plasma membrane. Annexin A1 protein, which has an apparent relative molecular mass of 40 kDa, has phospholipase A2 inhibitory activity. Since phospholipase A2 is required for the biosynthesis of prostaglandins and leukotrienes (both potent mediators of inflammation), annexin I may have potential anti-inflammatory activity.

A further refinement allowed the nanoparticles to be specifically targeted to collagen IV, a protein found in abundance at sites of tissue injury. These nanoparticles were administered to a group of mice with self-limited zymosan-induced peritonitis and to another group with hind-limb ischemia-reperfusion injury.

Results reported in the March 26, 2013, online edition of the journal Proceedings of the National Academies of Sciences of the United States of America (PNAS) revealed that intravenous administration of the Ac2-26-containing nanoparticles to mice with peritonitis was significantly more effective at limiting recruitment of neutrophils and at increasing the resolution of inflammation than was intravenous administration of unbound Ac2-26. In mice with reperfusion injury, the nanoparticles reduced tissue damage in comparison with either of two types of control nanoparticles: those with a dud peptide in which the 24 amino acids were scrambled to render it biologically inactive and Ac2-26 nanoparticles without the collagen IV-targeting component.

“A variety of medications can be used to control inflammation. Such treatments, however, usually have significant side effects and dampen the positive aspects of the inflammatory response,” said contributing author Dr. Ira Tabas, professor of pathology and cell biology at Columbia University. “The beauty of this approach is that, unlike many other anti-inflammatory approaches, it takes advantage of nature's own design for preventing inflammation-induced damage, which does not compromise host defense and promotes tissue repair.”

The investigators have filed for patent protection for Ac2-26 nanoparticles to treat a variety of chronic inflammatory conditions, including atherosclerosis, autoimmune diseases, type II diabetes, and Alzheimer's disease.

Related Links:

Columbia University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.