Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Vitamin D Supplementation Activates Genes That Reduce Disease Risk

By BiotechDaily International staff writers
Posted on 08 Apr 2013
Advanced gene scanning microarray technology was used to identify a set of 291 genes linked to 160 biologic pathways that were activated by increased levels of vitamin D.

Vitamin D deficiency (less than 20 ng/mL of 25-hydroxyvitamin D), underlies a number of health issues, including rickets and other musculoskeletal diseases. More recent findings suggest that vitamin D deficiency and vitamin D insufficiency (from 21–29 ng/mL) are associated with various cancers, autoimmune diseases, infectious diseases, type II diabetes, and cardiovascular disease.

Investigators at Boston University School of Medicine (MA, USA) conducted a study to determine the effect of vitamin D status and subsequent vitamin D supplementation on broad gene expression in white blood cells collected from healthy adults before and two months after daily supplementation with either 400 or 2000 IU vitamin D3.

Results of analysis of white blood cell DNA collected from eight healthy adults during the randomized, double-blind, single center pilot trial were published in the March 20, 2013, online edition of the journal PLOS ONE. They revealed that vitamin D3 supplementation that improved serum 25-hydroxyvitamin D concentrations was associated with at least a 1.5 fold alteration in the expression of 291 genes (from the more than 22,500 genes that were investigated). There was a significant difference in the expression of 66 genes between subjects at baseline with vitamin D deficiency and subjects with normal levels of the vitamin.

Further analysis showed that the biologic functions associated with the 291 genes were related to 160 biologic pathways linked to cancer, autoimmune diseases, infectious diseases, and cardiovascular disease.

"This study reveals the molecular fingerprints that help explain the nonskeletal health benefits of vitamin D," said senior author Dr. Michael F. Holick, professor of medicine, physiology, and biophysics at Boston University School of Medicine. "While a larger study is necessary to confirm our observations, the data demonstrates that improving vitamin D status can have a dramatic effect on gene expression in our immune cells and may help explain the role of vitamin D in reducing the risk for cardiovascular disease, cancer, and other diseases."

Related Links:
Boston University School of Medicine



RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: On target: When researchers introduced nanobodies they made to cells engineered to express a tagged version of a protein in skeletal fibers known as tubulin (red), the nanobodies latched on. The cells above have recently divided (Photo courtesy of Rockefeller University).

Turning Antibodies into Precisely Tuned Nanobodies

New technology has the potential to create nanobodies making them much more accessible than antibodies for all sorts of research. Antibodies control the process of recognizing and zooming in on molecular... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.