Features Partner Sites Information LinkXpress
Sign In
Demo Company

Compound Enhances Skeletal Tissue Regeneration

By BiotechDaily International staff writers
Posted on 08 Apr 2013
Print article
New cutting-edge research revealed how a novel low-molecular-weight compound enhances ectopic bone formation and fracture repair.

The study, by investigators from conducted by the Atlanta Veterans Affairs Medical Center (GA, USA) and Emory University School of Medicine (Atlanta, GA, USA), was conducted to design and evaluate small molecules that could enhance recombinant human bone morphogenetic protein-2 (rhBMP-2) responsiveness. The investigation used two models to assess the ability of a small synthetic molecule to optimize bone formation in a rodent ectopic model and to determine whether an injection of that molecule accelerate callus formation in a rodent femoral fracture model.

The findings revealed that a single dose of the small molecule enhanced bone healing in the ectopic model combined with the occurrence of low-dose exogenous rhBMP-2, and in the femoral fracture model with the presence of only naturally occurring BMPs. The study’s findings, published in March 6, 2013, in the Journal of Bone and Joint Surgery.

SkelRegen, LLC (West Chester, PA, USA) is the first company to focus on newly identified small molecules that target different aspects of the skeletal tissue formation pathway. The study’s findings serves as additional confirmation that by following established procedures, SkelRegen continues to work on research to regenerate bone from scratch. “While our work on skeletal tissue regeneration is far from complete, this study exemplifies that research is continuing and SkelRegen technology is at the forefront,” said Stephen LaNeve, SkelRegen’s cofounder and CEO. “Our partnership with Emory University makes it possible for us to be part of such revolutionary work.”

Boden, SkelRegen’s cofounder and chief medical, science and technology officer, said, “The process was long and arduous and would not have been possible without the computational design work of the Emory/VA team led by Sree Sangadala, PhD But, ultimately these results further demonstrate how bone regeneration with small molecules will transform musculoskeletal care.”

SkelRegen identified not one, but multiple small molecules that are osteoinductive and target different features of the skeletal tissue formation pathway. All of the compounds are inexpensive to manufacture and many of the compounds are clear for other uses by the US Food and Drug Administration (FDA), therefore, they already have acceptable safety and toxicity profiles.

Related Links:

Atlanta Veterans Affairs Medical Center
Emory University School of Medicine

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.