Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Compound Enhances Skeletal Tissue Regeneration

By BiotechDaily International staff writers
Posted on 08 Apr 2013
New cutting-edge research revealed how a novel low-molecular-weight compound enhances ectopic bone formation and fracture repair.

The study, by investigators from conducted by the Atlanta Veterans Affairs Medical Center (GA, USA) and Emory University School of Medicine (Atlanta, GA, USA), was conducted to design and evaluate small molecules that could enhance recombinant human bone morphogenetic protein-2 (rhBMP-2) responsiveness. The investigation used two models to assess the ability of a small synthetic molecule to optimize bone formation in a rodent ectopic model and to determine whether an injection of that molecule accelerate callus formation in a rodent femoral fracture model.

The findings revealed that a single dose of the small molecule enhanced bone healing in the ectopic model combined with the occurrence of low-dose exogenous rhBMP-2, and in the femoral fracture model with the presence of only naturally occurring BMPs. The study’s findings, published in March 6, 2013, in the Journal of Bone and Joint Surgery.

SkelRegen, LLC (West Chester, PA, USA) is the first company to focus on newly identified small molecules that target different aspects of the skeletal tissue formation pathway. The study’s findings serves as additional confirmation that by following established procedures, SkelRegen continues to work on research to regenerate bone from scratch. “While our work on skeletal tissue regeneration is far from complete, this study exemplifies that research is continuing and SkelRegen technology is at the forefront,” said Stephen LaNeve, SkelRegen’s cofounder and CEO. “Our partnership with Emory University makes it possible for us to be part of such revolutionary work.”

Boden, SkelRegen’s cofounder and chief medical, science and technology officer, said, “The process was long and arduous and would not have been possible without the computational design work of the Emory/VA team led by Sree Sangadala, PhD But, ultimately these results further demonstrate how bone regeneration with small molecules will transform musculoskeletal care.”

SkelRegen identified not one, but multiple small molecules that are osteoinductive and target different features of the skeletal tissue formation pathway. All of the compounds are inexpensive to manufacture and many of the compounds are clear for other uses by the US Food and Drug Administration (FDA), therefore, they already have acceptable safety and toxicity profiles.

Related Links:

Atlanta Veterans Affairs Medical Center
Emory University School of Medicine
Regen



Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.