Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
BioConferenceLive
JIB

Blocking Galactin-3 Binding Prevents Metastasis in Various Cancers

By BiotechDaily International staff writers
Posted on 03 Apr 2013
A small molecule derived from a glycoprotein that protects cod from freezing binds and inhibits galectin-3 and prevents metastasis in various cancers, including prostate adenocarcinoma.

Galectin-3 (gal3) is one of the 14 recognized mammalian lectins. This protein weighs approximately 30 kDa and, like all galectins, contains a carbohydrate-recognition-binding domain of about 130 amino acids that enables the specific binding of beta-galactosides. Gal3 is expressed in cells in the nucleus, cytoplasm, mitochondrion, cell surface, and extracellular space. This protein has been shown to be involved in cell adhesion, cell activation and chemoattraction, cell growth and differentiation, cell cycle, and apoptosis. Gal3 recognizes the Thomsen-Friedenreich disaccharide (TFD, galactose-N-acetylgalactosamine) that is present on the surface of most cancer cells and is involved in promoting angiogenesis, tumor-endothelial cell adhesion, and metastasis of prostate cancer cells, as well as evading immune surveillance through killing of activated T-cells.

Investigators at the University of Maryland School of Medicine (Baltimore, USA) isolated a glycopeptide (TDF100) from cod that presents the disaccharide (galactose-N-acetylgalactosamine) recognized by gal3.

They reported in the March 11, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that TFD100 blocked gal3-mediated angiogenesis, tumor-endothelial cell interactions, and metastasis of prostate cancer cells in mice at nanomolar levels. Apoptosis of activated T-cells—induced by either recombinant gal3 or prostate cancer patient serum-associated gal3—was inhibited by nanomolar concentrations of TFD100.

“This study is among the first to explore the therapeutic utility of a bioactive cod TFD-containing glycopeptide to inhibit prostate cancer from progressing,” said senior author Dr. Hafiz Ahmed, assistant professor of biochemistry and molecular biology at the University of Maryland School of Medicine. “The TFD (Thomsen-Friedenreich disaccharide) antigen in the fish protein is hidden in normal human cells but is exposed on the surface of cancer cells and is believed to play a key role in how cancer spreads.”

“The use of natural dietary products with antitumor activity is an important and emerging field of research,” said Dr. Ahmed. “Understanding how these products work could allow us to develop foods that also act as cancer therapeutics and agents for immunotherapy.”

Related Links:
University of Maryland School of Medicine




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: Neurons (greenish yellow) attach to silk-based scaffold (blue) creating functional networks throughout the scaffold pores (dark areas) (Photo courtesy of Tufts University).

Functional 3D Brain-Like Tissue Model Bioengineered

Researchers recently reported on the development of the first complex, three-dimensional (3D) model comprised of brain-like cortical tissue that displays biochemical and electrophysiologic responses, and... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.