Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Blocking Galactin-3 Binding Prevents Metastasis in Various Cancers

By BiotechDaily International staff writers
Posted on 03 Apr 2013
A small molecule derived from a glycoprotein that protects cod from freezing binds and inhibits galectin-3 and prevents metastasis in various cancers, including prostate adenocarcinoma.

Galectin-3 (gal3) is one of the 14 recognized mammalian lectins. This protein weighs approximately 30 kDa and, like all galectins, contains a carbohydrate-recognition-binding domain of about 130 amino acids that enables the specific binding of beta-galactosides. Gal3 is expressed in cells in the nucleus, cytoplasm, mitochondrion, cell surface, and extracellular space. This protein has been shown to be involved in cell adhesion, cell activation and chemoattraction, cell growth and differentiation, cell cycle, and apoptosis. Gal3 recognizes the Thomsen-Friedenreich disaccharide (TFD, galactose-N-acetylgalactosamine) that is present on the surface of most cancer cells and is involved in promoting angiogenesis, tumor-endothelial cell adhesion, and metastasis of prostate cancer cells, as well as evading immune surveillance through killing of activated T-cells.

Investigators at the University of Maryland School of Medicine (Baltimore, USA) isolated a glycopeptide (TDF100) from cod that presents the disaccharide (galactose-N-acetylgalactosamine) recognized by gal3.

They reported in the March 11, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that TFD100 blocked gal3-mediated angiogenesis, tumor-endothelial cell interactions, and metastasis of prostate cancer cells in mice at nanomolar levels. Apoptosis of activated T-cells—induced by either recombinant gal3 or prostate cancer patient serum-associated gal3—was inhibited by nanomolar concentrations of TFD100.

“This study is among the first to explore the therapeutic utility of a bioactive cod TFD-containing glycopeptide to inhibit prostate cancer from progressing,” said senior author Dr. Hafiz Ahmed, assistant professor of biochemistry and molecular biology at the University of Maryland School of Medicine. “The TFD (Thomsen-Friedenreich disaccharide) antigen in the fish protein is hidden in normal human cells but is exposed on the surface of cancer cells and is believed to play a key role in how cancer spreads.”

“The use of natural dietary products with antitumor activity is an important and emerging field of research,” said Dr. Ahmed. “Understanding how these products work could allow us to develop foods that also act as cancer therapeutics and agents for immunotherapy.”

Related Links:
University of Maryland School of Medicine




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Genome-Wide Mutation-Searching Computational Software Designed for Genomic Medicine

Analysis software cross-references a patient’s symptoms with his genome sequence to help physicians in the diagnosis of disease. This software was created by a team of scientists from A*STAR’s Genome Institute of Singapore (GIS), led by Dr. Pauline Ng. The research findings were published August 3, 2014, in the journal... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.