Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Blocking Galactin-3 Binding Prevents Metastasis in Various Cancers

By BiotechDaily International staff writers
Posted on 03 Apr 2013
A small molecule derived from a glycoprotein that protects cod from freezing binds and inhibits galectin-3 and prevents metastasis in various cancers, including prostate adenocarcinoma.

Galectin-3 (gal3) is one of the 14 recognized mammalian lectins. This protein weighs approximately 30 kDa and, like all galectins, contains a carbohydrate-recognition-binding domain of about 130 amino acids that enables the specific binding of beta-galactosides. Gal3 is expressed in cells in the nucleus, cytoplasm, mitochondrion, cell surface, and extracellular space. This protein has been shown to be involved in cell adhesion, cell activation and chemoattraction, cell growth and differentiation, cell cycle, and apoptosis. Gal3 recognizes the Thomsen-Friedenreich disaccharide (TFD, galactose-N-acetylgalactosamine) that is present on the surface of most cancer cells and is involved in promoting angiogenesis, tumor-endothelial cell adhesion, and metastasis of prostate cancer cells, as well as evading immune surveillance through killing of activated T-cells.

Investigators at the University of Maryland School of Medicine (Baltimore, USA) isolated a glycopeptide (TDF100) from cod that presents the disaccharide (galactose-N-acetylgalactosamine) recognized by gal3.

They reported in the March 11, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that TFD100 blocked gal3-mediated angiogenesis, tumor-endothelial cell interactions, and metastasis of prostate cancer cells in mice at nanomolar levels. Apoptosis of activated T-cells—induced by either recombinant gal3 or prostate cancer patient serum-associated gal3—was inhibited by nanomolar concentrations of TFD100.

“This study is among the first to explore the therapeutic utility of a bioactive cod TFD-containing glycopeptide to inhibit prostate cancer from progressing,” said senior author Dr. Hafiz Ahmed, assistant professor of biochemistry and molecular biology at the University of Maryland School of Medicine. “The TFD (Thomsen-Friedenreich disaccharide) antigen in the fish protein is hidden in normal human cells but is exposed on the surface of cancer cells and is believed to play a key role in how cancer spreads.”

“The use of natural dietary products with antitumor activity is an important and emerging field of research,” said Dr. Ahmed. “Understanding how these products work could allow us to develop foods that also act as cancer therapeutics and agents for immunotherapy.”

Related Links:
University of Maryland School of Medicine




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The new peptide offers a triple hormone effect in a single-cell molecule (Photo courtesy of Indiana University).

Tripeptide Drug Effectively Controls Metabolic Syndrome in Rodent Model

Promising results in reducing obesity and normalizing glucose metabolism obtained with a synthetic dipeptide drug have been enhanced by the addition of a molecule of a third hormone, glucagon.... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.