Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Highly Sensitive Prostate Cancer Imaging Using Small Prostate-Specific Membrane Antigen Molecules

By BiotechDaily International staff writers
Posted on 18 Mar 2013
Two unique radiolabeled small molecules targeting prostate-specific membrane antigen (PSMA) have excellent possibilities for additional development as diagnostic and therapeutic radiopharmaceutical agents. The imaging agents, 123I-MIP-1072 and 123I-MIP-1095, were shown to have a high sensitivity of lesion detection in soft tissue, bone, and the prostate gland with nominal retention in nontarget tissue.

An estimated 238,500 men will be diagnosed with prostate cancer in 2013, and 29,700 will die from the disease. Effective staging and diagnosis of prostate cancer is critical to determining the correct patient management. Patients with localized disease may benefit from a curative treatment, while those with bone metastases are usually treated with systemic therapy.

“Current imaging techniques have limitations in diagnosing and staging prostate cancer. New imaging approaches, including the radiolabeled small molecules 123I-MIP-1072 and 123I-MIP-1095, may assess disease status more accurately,” said John J. Babich, PhD, from Molecular Insight Pharmaceuticals, Inc. (Cambridge, MA, USA), and lead author of the article, which was published March 2013 in the Journal of Nuclear Medicine (JNM). “Improved imaging approaches could better facilitate the selection of optimal treatment and improve patient outcomes.”

Separate studies were conducted as part of phase 1 trials under an investigational new drug (IND) application to measure the potential effectiveness of the small molecules in diagnosing and staging prostate cancer. In the first study, seven patients with validated prostate cancer were administered doses of 123I-MIP-1072 and 123I-MIP-1095 two weeks apart. In the second study, six healthy volunteers received 123I-MIP-1072 only. Whole body planar imaging and single photon emission computed tomography (SPECT)/computed tomography (CT) were performed for each group, and pharmacokinetics, tissue distribution, excretion, safety, and organ radiation dose were studied.

Both 123I-MIP-1072 and 123I-MIP-1095 visualized lesions in soft tissue, bone and the prostate gland as early as one to four hours after injection. The imaging agents cleared the blood in a biphasic manner; however, clearance of 123I-MIP-1072 was approximately five times faster, resulting in a higher lesion-to-background ratio as compared to 123I-MIP-1095. The largest organ-absorbed radiation doses for 123I-MIP-1072 were to the urinary bladder, salivary glands, and kidneys; for 123I-MIP-1095 the absorbed doses to the salivary glands, kidneys, and thyroid were the largest. Both imaging agents were well tolerated by the study participants.

As a result of the phase 1 findings, 123I-MIP-1072 was assessed as a diagnostic agent in subsequent clinical trials on the basis of its higher lesion-to-background ratios and prolonged tumor retention. 123I-MIP-1095 will be clinically examined for radiotherapy for metastatic prostate cancer as the 131I-labeled analog.

“A more accurate method of imaging prostate cancer and prostate cancer metastases would significantly impact the clinical management of men with prostate cancer. This would provide greater certainty as to the presence and extent of disease during the course of the patient’s treatment,” said Dr. Babich. “Data indicate that PSMA is an excellent target for molecular imaging of prostate cancer and that radiolabeled small molecules, which bind PSMA with high affinity, can localize prostate cancer anywhere in the body. The use of SPECT for molecular imaging could represent a significant advance in cancer evaluation.”

Related Links:

Molecular Insight Pharmaceuticals



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.