Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Highly Sensitive Prostate Cancer Imaging Using Small Prostate-Specific Membrane Antigen Molecules

By BiotechDaily International staff writers
Posted on 18 Mar 2013
Two unique radiolabeled small molecules targeting prostate-specific membrane antigen (PSMA) have excellent possibilities for additional development as diagnostic and therapeutic radiopharmaceutical agents. The imaging agents, 123I-MIP-1072 and 123I-MIP-1095, were shown to have a high sensitivity of lesion detection in soft tissue, bone, and the prostate gland with nominal retention in nontarget tissue.

An estimated 238,500 men will be diagnosed with prostate cancer in 2013, and 29,700 will die from the disease. Effective staging and diagnosis of prostate cancer is critical to determining the correct patient management. Patients with localized disease may benefit from a curative treatment, while those with bone metastases are usually treated with systemic therapy.

“Current imaging techniques have limitations in diagnosing and staging prostate cancer. New imaging approaches, including the radiolabeled small molecules 123I-MIP-1072 and 123I-MIP-1095, may assess disease status more accurately,” said John J. Babich, PhD, from Molecular Insight Pharmaceuticals, Inc. (Cambridge, MA, USA), and lead author of the article, which was published March 2013 in the Journal of Nuclear Medicine (JNM). “Improved imaging approaches could better facilitate the selection of optimal treatment and improve patient outcomes.”

Separate studies were conducted as part of phase 1 trials under an investigational new drug (IND) application to measure the potential effectiveness of the small molecules in diagnosing and staging prostate cancer. In the first study, seven patients with validated prostate cancer were administered doses of 123I-MIP-1072 and 123I-MIP-1095 two weeks apart. In the second study, six healthy volunteers received 123I-MIP-1072 only. Whole body planar imaging and single photon emission computed tomography (SPECT)/computed tomography (CT) were performed for each group, and pharmacokinetics, tissue distribution, excretion, safety, and organ radiation dose were studied.

Both 123I-MIP-1072 and 123I-MIP-1095 visualized lesions in soft tissue, bone and the prostate gland as early as one to four hours after injection. The imaging agents cleared the blood in a biphasic manner; however, clearance of 123I-MIP-1072 was approximately five times faster, resulting in a higher lesion-to-background ratio as compared to 123I-MIP-1095. The largest organ-absorbed radiation doses for 123I-MIP-1072 were to the urinary bladder, salivary glands, and kidneys; for 123I-MIP-1095 the absorbed doses to the salivary glands, kidneys, and thyroid were the largest. Both imaging agents were well tolerated by the study participants.

As a result of the phase 1 findings, 123I-MIP-1072 was assessed as a diagnostic agent in subsequent clinical trials on the basis of its higher lesion-to-background ratios and prolonged tumor retention. 123I-MIP-1095 will be clinically examined for radiotherapy for metastatic prostate cancer as the 131I-labeled analog.

“A more accurate method of imaging prostate cancer and prostate cancer metastases would significantly impact the clinical management of men with prostate cancer. This would provide greater certainty as to the presence and extent of disease during the course of the patient’s treatment,” said Dr. Babich. “Data indicate that PSMA is an excellent target for molecular imaging of prostate cancer and that radiolabeled small molecules, which bind PSMA with high affinity, can localize prostate cancer anywhere in the body. The use of SPECT for molecular imaging could represent a significant advance in cancer evaluation.”

Related Links:

Molecular Insight Pharmaceuticals



WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Exosomes loaded with catalase (shown in red) efficiently interact with neurons (shown in black) to protect them from the effects of Parkinson\'s disease (Photo courtesy of Dr. Elena Batrakova, University of North Carolina).

Exome Delivery of the Anti-Oxidant Catalase Reduces Parkinson's Disease Symptoms in Mouse Model

The exosome delivery of the antioxidant enzyme catalase was shown to dramatically reduce symptoms of Parkinson's disease (PD) in a mouse model. Exosomes are cell-derived vesicles that are present in... Read more

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.