Features | Partner Sites | Information | LinkXpress
Sign In
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC
Demo Company

Misuse of Antibiotics May Spur Bacterial Acquisition of Drug Resistance

By BiotechDaily International staff writers
Posted on 18 Mar 2013
Petri dish with bacterial colonies growing in a hazardous substrate (Photo courtesy of Dr. Mohammed Bakkali, Department of Genetics, University of Granada).
Petri dish with bacterial colonies growing in a hazardous substrate (Photo courtesy of Dr. Mohammed Bakkali, Department of Genetics, University of Granada).
A recent paper reviewed the scientific literature regarding acquisition of drug resistance by bacteria and advanced the theory that in most cases resistance is transferred by uptake of DNA that had been released by resistant organisms that had been broken open by the stress of antibiotic treatment.

The author, Dr. Mohammed Bakkali, professor of genetics at the University of Granada (Spain) reviewed some of the literature on bacterial acquisition of drug resistance and discussed four hypotheses on how and why bacteria take up DNA. He argued in the February 5, 2013, online edition of the journal Archives of Microbiology that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions.

This hypothesis has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence.

"Our current indiscriminate use of antibiotics not only selects the resistant bacteria, but also means that the bacteria take up more DNA, due to their increased motility in response to the stress that the antibiotic subjects them to," said Dr. Bakkali. "In this way, the nonresistant bacteria become resistant completely by accident on ingesting this DNA and can even become much more virulent, partly due to the stress we subject them to when we make an abusive use of antibiotics."

Related Links:

University of Granada



Channels

Genomics/Proteomics

view channel
Image: An activated PTEN dimer that contains two non-mutant proteins (A) can transform the functional lipid (D) on the cellular membrane (E) into a chemical form that tunes down cancer predilection. Dimers that contain a mutated protein (B) or PTEN monomers cannot transform the functional lipid (Photo courtesy of Carnegie Mellon University).

PTEN Requires a Stable Dimer Configuration to Effectively Suppress Tumor Growth

Molecular structural analysis has shown that the PTEN (phosphatase and tensin homolog) tumor suppressor can function effectively only when two wild-type alleles are present to form a stable dimer that... Read more

Lab Technologies

view channel
Image: The VIAFLO Assist pipette adapter (Photo courtesy of INTEGRA Biosciences).

Pipetting Assistant Helps Prevent Repetitive Strain Injuries

A powerful pipetting accessory makes life easier for technicians in both clinical and research laboratories. Prolonged and repetitive pipetting sessions bear the risk of strain and fatigue, often resulting... Read more

Business

view channel

MS Drug Deal to Net More Than USD 1 Billion

A pharmaceutical company based in Switzerland has purchased the remaining rights to the multiple sclerosis drug Ofatumumab, which will allow it to continue development of the compound for treating relapsing remitting multiple sclerosis (RRMS) and similar autoimmune diseases. Novartis (Basel, Switzerland) recently announced... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.