Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Misuse of Antibiotics May Spur Bacterial Acquisition of Drug Resistance

By BiotechDaily International staff writers
Posted on 18 Mar 2013
Petri dish with bacterial colonies growing in a hazardous substrate (Photo courtesy of Dr. Mohammed Bakkali, Department of Genetics, University of Granada).
Petri dish with bacterial colonies growing in a hazardous substrate (Photo courtesy of Dr. Mohammed Bakkali, Department of Genetics, University of Granada).
A recent paper reviewed the scientific literature regarding acquisition of drug resistance by bacteria and advanced the theory that in most cases resistance is transferred by uptake of DNA that had been released by resistant organisms that had been broken open by the stress of antibiotic treatment.

The author, Dr. Mohammed Bakkali, professor of genetics at the University of Granada (Spain) reviewed some of the literature on bacterial acquisition of drug resistance and discussed four hypotheses on how and why bacteria take up DNA. He argued in the February 5, 2013, online edition of the journal Archives of Microbiology that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions.

This hypothesis has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence.

"Our current indiscriminate use of antibiotics not only selects the resistant bacteria, but also means that the bacteria take up more DNA, due to their increased motility in response to the stress that the antibiotic subjects them to," said Dr. Bakkali. "In this way, the nonresistant bacteria become resistant completely by accident on ingesting this DNA and can even become much more virulent, partly due to the stress we subject them to when we make an abusive use of antibiotics."

Related Links:

University of Granada



WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Outer membrane vesicles released by Bacteroides thetaiotaomicron may help initiate inflammatory bowel disease (Photo courtesy of Wandy Beatty, Washington University School of Medicine).

Interaction of Gut Cells with Bacterial Outer Membrane Vesicles Triggers Inflammatory Bowel Disease in Mouse Model

Interaction of bacterial outer membrane vesicles (OMVs) harboring sulfatase activity with the cells lining the gut has been implicated as a key step in the development of inflammatory bowel diseases (IBDs)... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.