Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Protein Chimera Activates Antitumor Immunity in Mouse Model

By BiotechDaily International staff writers
Posted on 14 Mar 2013
Cancer researchers have synthesized a chimeric protein comprising the large stress protein or chaperone Grp170 and a fragment of the bacterial protein flagellin that blocked tumor growth and metastasis by mobilizing or restoring antitumor immunity.

Molecular chaperones are proteins and protein complexes that bind to misfolded or unfolded polypeptide chains and affect the subsequent folding processes of these chains. All proteins are created at the ribosome as straight chains of amino acids, but must be folded into a precise, three-dimensional conformation in order to perform their specific functions. The misfolded or unfolded polypeptide chains to which chaperones bind are said to be "non-native," meaning that they are not folded into their functional conformation. Chaperones are found in all types of cells and cellular compartments, and have a wide range of binding specificities and functional roles. The chaperone Grp170 is being evaluated for its potential in cancer chemotherapy due findings that indicated that this molecule prompted the immune system to recognize cancer antigens.

Flagellin is a 30,000 to 60,000 Dalton globular protein that arranges itself into a hollow cylinder to form the filament in bacterial flagellum. This protein is the principal constituent of bacterial flagellum and is present in large amounts on nearly all flagellated bacteria. Mammals often have acquired immune responses (T-cell and antibody responses) to this flagellar antigen.

Investigators at Virginia Commonwealth University (Richmond, USA) strategically incorporated a pathogen flagellin-derived, NF-kappaB-stimulating "danger signal" fragment into the large chaperone Grp170 protein that previously had shown the ability to facilitate antigen cross-presentation.

They reported in the January 18, 2013, online edition of the journal Cancer Research that this engineered chimeric molecule, which they called Flagrp170, was capable of transporting tumor antigens and concurrently inducing functional activation of dendritic cells. Injection of nonreplicating adenoviruses expressing the gene for Flagrp170 directly into tumors induced a superior antitumor response against B16 melanoma and its distant lung metastasis compared to unmodified Grp170 and flagellin. The enhanced tumor destruction was accompanied with significantly increased tumor infiltration by CD8+ cells as well as elevation of interferon-gamma and interleukin-12 levels in the tumor sites. The therapeutic efficacy of Flagrp170 and its immune stimulating activity were also confirmed in mouse prostate cancer and colon carcinoma.

"Successfully promoting antitumor immunity will help eradicate tumor cells, control cancer progression, and help prevent tumor relapse," said senior author Dr. Xiang-Yang Wang, associate professor of human and molecular genetics at Virginia Commonwealth University. "This immunotherapy has the potential to be used alone or in combination with conventional cancer treatments to develop and establish immune protection against cancer and its metastases."

"Overcoming cancer's ability to suppress the body's natural immune responses and restore or develop immunity for tumor eradication is the goal of cancer immunotherapy," said Dr. Wang. "More experiments are needed, but we are hoping Flagrp-170 may one day be used in formulating more effective therapeutic cancer vaccines."

Related Links:

Virginia Commonwealth University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.