Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Synthetic Fungal Compounds Show Potent Anticancer Potential

By BiotechDaily International staff writers
Posted on 12 Mar 2013
Recent advances in the chemical synthesis of rare fungal compounds have yielded an exciting new class of reagents with potent anticancer properties.

Investigators at the Massachusetts Institute of Technology (Cambridge, MA, USA) have been working with a class of fungal compounds called epipolythiodiketopiperazine (ETP) alkaloids. However, until recently the small amounts of these compounds that are produced naturally have made it difficult to do a comprehensive study of the relationship between the compounds' structure and their activity.

In a paper published in the January 24, 2013, online edition of the journal Chemical Science the investigators reported the development and application of a flexible and scalable synthetic technique, which allowed the construction of dozens of ETP derivatives.

Sixty of these compounds were tested against two different human cancer cell lines—cervical cancer and lymphoma. Many ETP derivatives demonstrated potent anticancer activity and killed cancer cells via induction of apoptosis. The most effective 25 compounds were tested against three additional lines, from lung, kidney, and breast tumors.

Overall, dimeric compounds appeared to be more effective at killing cancer cells than monomers, and compounds with at least two sulfur atoms were more effective than those with only one sulfur atom. Compounds lacking sulfur did not kill tumor cells efficiently. The active compounds were found to be approximately 1,000 times more toxic to cancer cells than they were to normal cells.

Several traits that bode well for the translational potential of the ETP class of natural products include concise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sites that should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo.

"What was particularly exciting to us was to see, across various cancer cell lines, that some of them are quite potent," said first author Dr. Mohammed Movassaghi, professor of chemistry at the Massachusetts Institute of Technology. "There is a lot of data out there, very exciting data, but one thing we were interested in doing is taking a large panel of these compounds, and for the first time, evaluating them in a uniform manner. We can go in with far greater precision and test the hypotheses we are developing in terms of what portions of the molecules are most significant at retaining or enhancing biological activity."

Related Links:

Massachusetts Institute of Technology



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.