Features | Partner Sites | Information | LinkXpress
Sign In
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Synthetic Fungal Compounds Show Potent Anticancer Potential

By BiotechDaily International staff writers
Posted on 12 Mar 2013
Recent advances in the chemical synthesis of rare fungal compounds have yielded an exciting new class of reagents with potent anticancer properties.

Investigators at the Massachusetts Institute of Technology (Cambridge, MA, USA) have been working with a class of fungal compounds called epipolythiodiketopiperazine (ETP) alkaloids. However, until recently the small amounts of these compounds that are produced naturally have made it difficult to do a comprehensive study of the relationship between the compounds' structure and their activity.

In a paper published in the January 24, 2013, online edition of the journal Chemical Science the investigators reported the development and application of a flexible and scalable synthetic technique, which allowed the construction of dozens of ETP derivatives.

Sixty of these compounds were tested against two different human cancer cell lines—cervical cancer and lymphoma. Many ETP derivatives demonstrated potent anticancer activity and killed cancer cells via induction of apoptosis. The most effective 25 compounds were tested against three additional lines, from lung, kidney, and breast tumors.

Overall, dimeric compounds appeared to be more effective at killing cancer cells than monomers, and compounds with at least two sulfur atoms were more effective than those with only one sulfur atom. Compounds lacking sulfur did not kill tumor cells efficiently. The active compounds were found to be approximately 1,000 times more toxic to cancer cells than they were to normal cells.

Several traits that bode well for the translational potential of the ETP class of natural products include concise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sites that should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo.

"What was particularly exciting to us was to see, across various cancer cell lines, that some of them are quite potent," said first author Dr. Mohammed Movassaghi, professor of chemistry at the Massachusetts Institute of Technology. "There is a lot of data out there, very exciting data, but one thing we were interested in doing is taking a large panel of these compounds, and for the first time, evaluating them in a uniform manner. We can go in with far greater precision and test the hypotheses we are developing in terms of what portions of the molecules are most significant at retaining or enhancing biological activity."

Related Links:

Massachusetts Institute of Technology



Channels

Genomics/Proteomics

view channel
Image: Researchers have generated disease-free stem cells from patients with mitochondrial disease that can be converted into any cell type including neuronal progenitors (left) or heart cells (right). These could potentially be used for future transplantation into patients (Photo courtesy of Salk Institute of Biological Studies).

Methods Developed to Generate Normal Stem Cells from Patients with Mitochondrial Defects

A recent paper described two methods for converting cells from patients with mitochondrial defects into normal pluripotent stem cells that could be induced to differentiate into several different types of tissues.... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.