Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Synthetic Fungal Compounds Show Potent Anticancer Potential

By BiotechDaily International staff writers
Posted on 12 Mar 2013
Recent advances in the chemical synthesis of rare fungal compounds have yielded an exciting new class of reagents with potent anticancer properties.

Investigators at the Massachusetts Institute of Technology (Cambridge, MA, USA) have been working with a class of fungal compounds called epipolythiodiketopiperazine (ETP) alkaloids. However, until recently the small amounts of these compounds that are produced naturally have made it difficult to do a comprehensive study of the relationship between the compounds' structure and their activity.

In a paper published in the January 24, 2013, online edition of the journal Chemical Science the investigators reported the development and application of a flexible and scalable synthetic technique, which allowed the construction of dozens of ETP derivatives.

Sixty of these compounds were tested against two different human cancer cell lines—cervical cancer and lymphoma. Many ETP derivatives demonstrated potent anticancer activity and killed cancer cells via induction of apoptosis. The most effective 25 compounds were tested against three additional lines, from lung, kidney, and breast tumors.

Overall, dimeric compounds appeared to be more effective at killing cancer cells than monomers, and compounds with at least two sulfur atoms were more effective than those with only one sulfur atom. Compounds lacking sulfur did not kill tumor cells efficiently. The active compounds were found to be approximately 1,000 times more toxic to cancer cells than they were to normal cells.

Several traits that bode well for the translational potential of the ETP class of natural products include concise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sites that should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo.

"What was particularly exciting to us was to see, across various cancer cell lines, that some of them are quite potent," said first author Dr. Mohammed Movassaghi, professor of chemistry at the Massachusetts Institute of Technology. "There is a lot of data out there, very exciting data, but one thing we were interested in doing is taking a large panel of these compounds, and for the first time, evaluating them in a uniform manner. We can go in with far greater precision and test the hypotheses we are developing in terms of what portions of the molecules are most significant at retaining or enhancing biological activity."

Related Links:

Massachusetts Institute of Technology



RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A 3-dimensional picture reveals how the antibodies in the experimental drug Zmapp bind to Ebola virus (Photo courtesy of the Scripps Research Institute).

Electron Microscope Imaging Shows How Experimental Anti-Ebola Drug Works

Electron microscope imaging has revealed how the experimental drug ZMapp binds to the Ebolavirus and provides insights into how the drug prevents growth of the pathogen. ZMapp, which was developed by... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.