Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Selective Inhibition of Bcl6 Could Lead to New Treatment Options for Diffuse Large B-cell Lymphoma

By BiotechDaily International staff writers
Posted on 12 Mar 2013
Cancer researchers have demonstrated that it is possible to disable the transcription factor Bcl6 selectively in lymphoma cells without impairing its function in normal cells in the body.

Bcl6 causes the majority of diffuse large B-cell lymphomas (DLBCLs), the most common form of non-Hodgkin lymphoma. Depletion or blockade of Bcl6 potently kills lymphoma cells in tissue culture, and it is therefore a critical therapeutic target. Like many oncogenes and tumor suppressors, Bcl6 is a transcription factor. This protein can interact with several co-repressor complexes to inhibit transcription. The gene for Bcl6 is found to be frequently translocated and highly mutated in DLBCL, and contributes to the pathogenesis of the disease.

Investigators at Weill Cornell Medical College (New York, NY, USA) had previously used an integrated biochemical and computational approach to identify small molecules that could specifically disrupt the activity of Bcl6 by blocking its interaction in the critical BTB groove with its co-repressors BCOR, N-CoR, and SMRT. In the current study, they created a mutated form of Bcl6 that possessed a nonfunctional BTB domain, but was otherwise identical to native Bcl6.

The investigators reported in the March 3, 2013, online edition of the journal Nature Immunology that genetic replacement with mutated Bcl6 that could not bind co-repressors to its BTB domain resulted in disruption of the formation of germinal centers (GCs) and affinity maturation of immunoglobulins due to a defect in the proliferation and survival of B-cells. Germinal centers are sites within lymph nodes (also within lymph nodules in peripheral lymph tissues) where mature B lymphocytes rapidly proliferate, differentiate, mutate their antibodies (through somatic hypermutation), and class switch their antibodies during a normal immune response to an infection.

Loss of function of the BTB domain had no effect on the differentiation and function of follicular helper T-cells or that of other helper T-cell subsets. Bcl6-null mice had a lethal inflammatory phenotype, whereas mice with a mutant BTB domain had normal healthy lives with no inflammation.

"The finding comes as a very welcome surprise," said senior author Dr. Ari Melnick, professor of medicine at Weill Cornell Medical College. "This means the drugs we have developed against Bcl6 are more likely to be significantly less toxic and safer for patients with this cancer than we realized."

"Scientists have been searching for the right answer to treat this difficult lymphoma, which, after initial treatment, can be at high risk of relapse and resistant to current therapies," said Dr. Melnick. "Believing that Bcl6 could not be targeted, some researchers have been testing alternative therapeutic approaches. This study strongly supports the notion of using Bcl6-targeting drugs. When cells lose control of Bcl6, lymphomas develop in the immune system. Lymphomas are "addicted" to Bcl6, and therefore Bcl6 inhibitors powerfully and quickly destroy lymphoma cells."

Related Links:
Weill Cornell Medical College


comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.