Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL
Demo Company

Interferon Treatment Eradicates a New Human Coronavirus in a Culture Model

By BiotechDaily International staff writers
Posted on 06 Mar 2013
A recently recognized human coronavirus was treated successfully in an in vitro model based on human bronchial epithelial tissue, which reduces fears that the virus might be capable of setting off a worldwide respiratory disease pandemic.

The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it was found to be associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembled the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses.

To get a handle on this potentially fatal pathogen, investigators at Kantonal Hospital (St. Gallen, Switzerland) developed an in vitro model based on human bronchial epithelial cells, which are highly susceptible to HCoV-EMC infection and in which the virus is able to multiply at a faster initial rate than the SARS virus. The investigators employed advanced genomic research tools such as reverse transcription (RT)-PCR and RNAseq data to experimentally determine the identity of seven HCoV-EMC subgenomic mRNAs.

Results published in the February 19, 2013, online edition of the journal mBio revealed that while the human bronchial epithelial cells were readily responsive to type I and type III interferon (IFN), neither a pronounced inflammatory cytokine nor any detectable IFN responses were found following HCoV-EMC infection, suggesting that innate immune evasion mechanisms and possible IFN antagonists of the virus were operational in the human host. On the other hand, type I and type III IFN were found to efficiently reduce HCoV-EMC replication in the human cell cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection.

"Surprisingly, this coronavirus grows very efficiently on human epithelial cells," said senior author Dr. Volker Thiel, a senior research fellow at Kantonal Hospital. "The other thing we found is that the viruses (HCoV-EMC, SARS, and the common cold virus) are all similar in terms of host responses: they do not provoke a huge innate immune response. We do not know whether the cases we observe are the tip of the iceberg, or whether many more people are infected without showing severe symptoms."

Related Links:
Kantonal Hospital



Channels

Genomics/Proteomics

view channel
Image: An activated PTEN dimer that contains two non-mutant proteins (A) can transform the functional lipid (D) on the cellular membrane (E) into a chemical form that tunes down cancer predilection. Dimers that contain a mutated protein (B) or PTEN monomers cannot transform the functional lipid (Photo courtesy of Carnegie Mellon University).

PTEN Requires a Stable Dimer Configuration to Effectively Suppress Tumor Growth

Molecular structural analysis has shown that the PTEN (phosphatase and tensin homolog) tumor suppressor can function effectively only when two wild-type alleles are present to form a stable dimer that... Read more

Lab Technologies

view channel
Image: The ChilliBlock modular system for precise, controlled cooling and heatingof biological samples (Photo courtesy of Asynt).

Modular Cooling/Heating System Safeguards Temperature-Sensitive Biological Samples

A new modular system designed for precise, controlled cooling and heating of biological samples in microplates, vials and Eppendorf tubes is now available for biotech, clinical, and life science laboratories.... Read more

Business

view channel

MS Drug Deal to Net More Than USD 1 Billion

A pharmaceutical company based in Switzerland has purchased the remaining rights to the multiple sclerosis drug Ofatumumab, which will allow it to continue development of the compound for treating relapsing remitting multiple sclerosis (RRMS) and similar autoimmune diseases. Novartis (Basel, Switzerland) recently announced... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.