Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

New Class of Anti-Influenza Drugs Less Likely to Trigger Resistance

By BiotechDaily International staff writers
Posted on 06 Mar 2013
A team of molecular virologists has designed a small molecule drug that blocks the spread of the influenza virus more effectively and with less likelihood of triggering development of resistance than the currently available antiviral agents.

Drugs for treatment of influenza are neuraminidase inhibitors that target the virus' surface neuraminidase enzyme. They work by blocking the function of the viral neuraminidase protein, thus preventing the virus from reproducing by budding from the host cell. Oseltamivir (Tamiflu) a prodrug, Zanamivir (Relenza), Laninamivir (Inavir), and Peramivir belong to this class. Unlike the M2 inhibitors, which work only against influenza A, neuraminidase inhibitors act against both influenza A and influenza B.

The main failing of the currently used neuraminidase inhibitors is the rapid development of strains of the virus that are resistant to the drugs. To counter this problem investigators at Simon Fraser University (Burnaby, BC, Canada) searched for potential drugs that would be as efficient as the currently used drugs but less likely to trigger development of resistant strains of the virus.

They reported in the February 21, 2013, online edition of the journal Science Express that they had discovered—and confirmed the mode of action via structural and mechanistic studies—a new class of specific, mechanism-based anti-influenza drugs that functioned via the formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme.

These compounds functioned in cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase inhibitor zanamivir and with broad-spectrum activity against drug-resistant strains in vitro.

The investigators maintain that the similarity of the drugs' structure to that of sialic acid, the natural substrate of neuraminidase, and their mechanism-based design make them attractive antiviral candidates.

The new class of drugs is particularly effective due to its water solubility. “They reach the patient’s throat where the flu virus is replicating after being taken orally,” said contributing author Dr. Masahiro Niikura, associate professor of virology at Simon Fraser University. “Influenza develops resistance to Repenza less frequently, but it is not the drug of choice like Tamiflu because it is not water-soluble and has to be taken as a nasal spray. Our new compounds are structurally more similar to sialic acid than Tamiflu. We expect this closer match will make it much more difficult for influenza to adapt to new drugs.”

Related Links:

Simon Fraser University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A scheme for the generation of induced pluripotent stem cells (IPSC). (1) Isolate and culture donor cells. (2) Transfect stem cell-associated genes into the cells by viral vectors. Red cells indicate the cells expressing the exogenous genes. (3)  Harvest and culture the cells using mitotically inactivated feeder cells. (4) A small subset of the transfected cells forms iPSC cell colonies (Photo courtesy of Wikimedia Commons).

Innovative Technique Produces More Reliable Pluripotent Stem Cells

A recent paper described a more reliable way to induce the formation of pluripotent stem cells (iPSCs) from adult cells in a mouse model. Reliable high-quality iPSCs are needed for the development of... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.