Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

New Class of Anti-Influenza Drugs Less Likely to Trigger Resistance

By BiotechDaily International staff writers
Posted on 06 Mar 2013
A team of molecular virologists has designed a small molecule drug that blocks the spread of the influenza virus more effectively and with less likelihood of triggering development of resistance than the currently available antiviral agents.

Drugs for treatment of influenza are neuraminidase inhibitors that target the virus' surface neuraminidase enzyme. They work by blocking the function of the viral neuraminidase protein, thus preventing the virus from reproducing by budding from the host cell. Oseltamivir (Tamiflu) a prodrug, Zanamivir (Relenza), Laninamivir (Inavir), and Peramivir belong to this class. Unlike the M2 inhibitors, which work only against influenza A, neuraminidase inhibitors act against both influenza A and influenza B.

The main failing of the currently used neuraminidase inhibitors is the rapid development of strains of the virus that are resistant to the drugs. To counter this problem investigators at Simon Fraser University (Burnaby, BC, Canada) searched for potential drugs that would be as efficient as the currently used drugs but less likely to trigger development of resistant strains of the virus.

They reported in the February 21, 2013, online edition of the journal Science Express that they had discovered—and confirmed the mode of action via structural and mechanistic studies—a new class of specific, mechanism-based anti-influenza drugs that functioned via the formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme.

These compounds functioned in cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase inhibitor zanamivir and with broad-spectrum activity against drug-resistant strains in vitro.

The investigators maintain that the similarity of the drugs' structure to that of sialic acid, the natural substrate of neuraminidase, and their mechanism-based design make them attractive antiviral candidates.

The new class of drugs is particularly effective due to its water solubility. “They reach the patient’s throat where the flu virus is replicating after being taken orally,” said contributing author Dr. Masahiro Niikura, associate professor of virology at Simon Fraser University. “Influenza develops resistance to Repenza less frequently, but it is not the drug of choice like Tamiflu because it is not water-soluble and has to be taken as a nasal spray. Our new compounds are structurally more similar to sialic acid than Tamiflu. We expect this closer match will make it much more difficult for influenza to adapt to new drugs.”

Related Links:

Simon Fraser University



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.